Menu

Blog

Archive for the ‘quantum physics’ category: Page 688

Sep 21, 2018

New Microscope Shows the Quantum World in Crazy Detail

Posted by in categories: biotech/medical, quantum physics

The transmission electron microscope was designed to break records. Using its beam of electrons, scientists have glimpsed many types of viruses for the first time. They’ve used it to study parts of biological cells like ribosomes and mitochondria. You can see individual atoms with it.

But experts have recently unlocked new potential for the machine. “It’s been a very dramatic and sudden shift,” says physicist David Muller of Cornell University. “It was a little bit like everyone was flying biplanes, and all of a sudden, here’s a jetliner.”

You’ve read your last complimentary article this month. To read the full article, SUBSCRIBE NOW. If you’re already a subscriber, please sign in and and verify your subscription.

Continue reading “New Microscope Shows the Quantum World in Crazy Detail” »

Sep 21, 2018

New observations to understand the phase transition in quantum chromodynamics

Posted by in categories: cosmology, particle physics, quantum physics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved nearly freely in a quark-gluon plasma. Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons.

In the current issue of Nature, an international team of scientists has presented an analysis of a series of experiments at major particle accelerators that sheds light on the nature of this transition. The scientists determined with precision the transition temperature and obtained new insights into the mechanism of cooling and freeze-out of the -gluon plasma into the current constituents of matter such as protons, neutrons and . The team of researchers consists of scientists from the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, and from the universities of Heidelberg and Münster (Germany), and Wroclaw (Poland).

A central result: The record-breaking high-energy experiments with the ALICE detector at the Large Hadron Collider (LHC) at the research center CERN produced matter in which particles and antiparticles coexisted in equal amounts, similar to the conditions in the . The team has confirmed via analysis of the experimental data theoretical predictions that the phase transition between and hadronic matter takes place at the temperature of 156 MeV, 120,000 times higher than that in the interior of the sun.

Continue reading “New observations to understand the phase transition in quantum chromodynamics” »

Sep 19, 2018

For Tiny Light Particles, ‘Before’ and ‘After’ Mean Nothing

Posted by in categories: particle physics, quantum physics

In the quantum world, the concepts of ‘before’ and ‘after’ can blend together.

Read more

Sep 18, 2018

Modified superconductor synapse reveals exotic electron behavior

Posted by in categories: business, particle physics, quantum physics

Electrons tend to avoid one another as they go about their business carrying current. But certain devices, cooled to near zero temperature, can coax these loner particles out of their shells. In extreme cases, electrons will interact in unusual ways, causing strange quantum entities to emerge.

Read more

Sep 18, 2018

Does IBM Have The Quantum Advantage?

Posted by in categories: computing, quantum physics

At the latest TechCrunch Disrupt conference IBM provided a visionary speech on the future of compute using quantum computing. IBM Research COO Dario Gil gave a very cogent description of quantum computing and how it will change the computing landscape in the near future.

Quantum computing is a very complex and esoteric technology to try to explain to an audience of entrepreneurs and developers looking to raise money for the next Snapchat. Interestingly enough, there was a quantum computing start up at Disrupt, Rigetti Computing, pitching a quantum computing cloud service. IBM introduced its quantum computing cloud service in May 2016.

Read more

Sep 18, 2018

Reimagining of Schrödinger’s cat breaks quantum mechanics — and stumps physicists

Posted by in category: quantum physics

In a multi-‘cat’ experiment, the textbook interpretation of quantum theory seems to lead to contradictory pictures of reality, physicists claim.

Read more

Sep 18, 2018

Quantum theory cannot consistently describe the use of itself

Posted by in category: quantum physics

Quantum mechanics is expected to provide a consistent description of reality, even when recursively describing systems contained in each other. Here, the authors develop a variant of Wigner’s friend Gedankenexperiment where each of the current interpretations of QM fails in giving a consistent description.

Read more

Sep 17, 2018

Bizarre Physics Phenomenon Suggests Objects Can Be Two Temperatures at Once

Posted by in category: quantum physics

The first new uncertainty principle to be formulated in decades helps explain why a quantum object can be two temperatures at once.

Read more

Sep 16, 2018

Why Is M-Theory the Leading Candidate for Theory of Everything?

Posted by in categories: cosmology, particle physics, quantum physics

It’s not easy being a “theory of everything.” A TOE has the very tough job of fitting gravity into the quantum laws of nature in such a way that, on large scales, gravity looks like curves in the fabric of space-time, as Albert Einstein described in his general theory of relativity. Somehow, space-time curvature emerges as the collective effect of quantized units of gravitational energy — particles known as gravitons. But naive attempts to calculate how gravitons interact result in nonsensical infinities, indicating the need for a deeper understanding of gravity.

String theory (or, more technically, M-theory) is often described as the leading candidate for the theory of everything in our universe. But there’s no empirical evidence for it, or for any alternative ideas about how gravity might unify with the rest of the fundamental forces. Why, then, is string/M-theory given the edge over the others?

The theory famously posits that gravitons, as well as electrons, photons and everything else, are not point-particles but rather imperceptibly tiny ribbons of energy, or “strings,” that vibrate in different ways. Interest in string theory soared in the mid-1980s, when physicists realized that it gave mathematically consistent descriptions of quantized gravity. But the five known versions of string theory were all “perturbative,” meaning they broke down in some regimes. Theorists could calculate what happens when two graviton strings collide at high energies, but not when there’s a confluence of gravitons extreme enough to form a black hole.

Continue reading “Why Is M-Theory the Leading Candidate for Theory of Everything?” »

Sep 16, 2018

The “Dark Matter” of Bizarre Superconductors

Posted by in categories: cosmology, information science, quantum physics, robotics/AI

Machine-learning algorithms are helping to unravel the quantum behaviour of a type of superconductor that has baffled physicists for decades.

Researchers used artificial intelligence to spot hidden order in images of a bizarre state in high-temperature superconductors.

Read more