Far from calm and peaceful, space is a dangerous place with high levels of radiation not only from our sun but from distant supernovas. This is not only dangerous to us but also to the spacecraft themselves with is able to damage the electronics and computers that keep it running and the crew alive in it. So how do they protect the craft and crew with what looks like almost no shielding at all?
From the US territory Guam, sightings came in of a fireball falling from the sky. The strategic location of Guam and the U.S. military stationed there has drawn attention for years. Guam thrust into the limelight during heightened tensions with North Korea. In August 2017, North Korea launched missiles that flew over Japan and into the northern Pacific Ocean in an apparent attempt to threaten the US territory of Guam. North Korean leader Kim Jong Un did not follow up on his threats, but a fireball came crashing down from a different source.
Local officials quickly released an announcement indicating the Chinese Long March Launch as a likely source of the fireball. Indeed, an Indonesia satellite launched on a Chinese rocket came crashing back to Earth. The satellite failed to reach orbit. The failure of the new communications satellite for Indonesia to reach orbit marked the second failure for china’s space agency in less than a month, state media reported April 9.
It is unlike the Chinese Long March 3, workhorse of the Chinese launch industry, series rocket to fall. According to the Xinhua News Agency, the rocket lifted off at 7:46 p.m local time from China’s Xichang Satellite Launch Center in the Sichuan province. The rocket traveled according to plan during the first and second stages. The Rocket third stage experienced abnormal conditions.
The ESA probe BepiColombo flew past Earth on the way to Mercury. The probe launched in 2018 and made the last visit of our home before continuing onward to the final destination. The spacecraft needs to shed velocity to arrive at Mercury in 2025 at a velocity to enter orbit. The spacecraft will make multiple additional planetary flybys of Venus and Mercury to slow down to enter orbit.
In space travel, mission planners need to balance mission resources. The amount of fuel required to either speed up or slow down a spacecraft greatly impacts the cost of the mission. Using a longer flight path can reduce the propellent requirements for a mission but the mission will take longer. Gravity assists can, therefore, allow a spacecraft to be launched on a cheaper, less powerful rocket.
Gravity assist flyby?
A Gravity assist flyby has other names including a gravitational slingshot, gravity assist maneuver, or swing-by. Gravity assistance maneuvers increase or decrease its speed or redirect the orbital path. The spacecraft slingshots around another object with a gravitational field and transfers some of the energy during that slingshot. In the case of BepiColombo, the spacecraft needs to slow down to be captured by Mercury…
Boeing flubbed the first mission of the CST-100. Seemingly a routine mission for SpaceX after completing over 20 deliveries to the International Space Station, Boeing showed how not to do it. During the December 2019 Demo flight for the Boeing Starliner CST-100, the Starliner did not reach its planned orbit. Nor did the Starliner dock to the International Space Station as planned. Boeing was able to complete a number of mission objectives during the flight to comply with the milestones related to NASA’s Commercial Crew.
On the ULA Atlas V rocket at 6:36 a.m. Friday, Dec. 20, the Boeing Starliner launched from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. Boeing has a long rich history in both aviation and spaceflight. This mission, already three years behind in schedule, should have been a slam dunk.
After launching to the incorrect orbit, Boeing was able to successfully recover the Starliner. NASA shared that Boeing’s CST-100 Starliner spacecraft did successfully complete the first land touchdown of a human-rated capsule at the White Sands Space Harbor in New Mexico at 7:58 a.m. EST (5:58 a.m. MST) on December 22, 2019. The landing followed a deorbit burn for the botched flight, separation of the spacecraft’s service module, and successful deployment of its three main parachutes and six airbags. Boeing’s approach to the Starliner is unique as the prior US-made capsules, including the SpaceX Dragon, are water recoveries.
Starliner settling softly to the ground on Airbags wasn’t enough.
The NASA and Boeing investigation into the spaceflight was disclosed in Early March 2020. The recommendations included a list of corrections that needed to be addressed prior to the Starliner launching again. The investigation documented 61 “corrective actions” for the company’s Starliner spacecraft. This type of test did do what it was supposed to do. Find issues before people are exposed to potentially dangerous situations. This human risk reduction is a hallmark of the NASA Commercial Crew Program which was put in place to alternatives to the Space Shuttle and Soyuz spacecraft. NASA associate administrator Doug Loverro shared with reporters on a conference call that he expected it months for Boeing to work through the list to be ready for another test flight.
SpaceX is in the process of developing a gigantic Starship that will one day perform voyages to the moon and Mars. The first test prototypes are under construction at the company’s South Texas facility in Boca Chica Beach. On April 2nd, engineers conducted a cryogenic pressure test on, the company’s third Starship prototype this year. The vehicle was loaded with cryogenic (super cold) liquid nitrogen, and pressurized in order to test out how much pressure the stainless-steel structure could withstand. During the test, the craft is pressurized to the max, as engineers inspect for leaks and hope the stainless-steel structure withstands a pressure strength between 6 and ~8.5 bar. This test aims to put the vehicle into conditions similar to those it would experience during a spaceflight. Though, Thursday’s test did not go as planned. The vehicle collapsed, sending shattered steel parts flying off the launch pad’s stand.
Always a good interview. Short answer, he doesn’t think the timeline is accurate.
Dr. Robert Zubrin, former engineer at Lockhead Martin and president and founder of the Mars Society joins us today for a groundbreaking conversation. We discuss the obstacles to sending humans to Mars and the moon, the emergence and role of private enterprise in leading the way to space exploration, as well as the likelihood of success of the US administration’s announcement of its goal to establish a permanent human presence on the moon in 4 years. Dr. Zubrin also recounts the details of his meetings with Elon Musk prior and during the foundation of SpaceX. Other subjects we touched on included the justification for space exploration in the face of mounting problems and priorities here on earth. We also discuss the role of space as a game-changer in the way military domination and conflicts will be done in the future.