Menu

Blog

Archive for the ‘space travel’ category: Page 313

Mar 30, 2020

Why a business case for Mars settlement is not required

Posted by in categories: business, economics, Elon Musk, government, space travel

Some people have claimed that a “business case” for profitable interplanetary trade with a Mars settlement, or at least the identification a saleable product for trade, is required before such a settlement can be established or supported by business or government. But there is no reasonable prospect for trade in any significant mass of physical material from a Mars settlement back to Earth in the near future due to the high transport costs. In his recent article in the National Review, “Elon Musk’s Plan to Settle Mars,” Robert Zubrin makes exactly the same point: a business case based on physical trade is not necessary and makes little sense. Later trade and commerce via non-physical goods such as software is probable once a settlement is fully operational. More significant and interesting economic situations will occur on Mars.

A good model for the expenditures needed to found colonies is the Greek and Phoenician expansion all across the Mediterranean and Black Sea areas in the period early in Greek history (before about 600 BC), leading to the founding of one of the greatest trading cities in history, Carthage. The cities who founded each colony did not expect immediate profit, but wanted good places for an expanding population and knew that, once the new cities were established, trade would also become established. Most of the cost was probably in building more ships. When European colonies were first established in the New World by Spain and Portugal, the emphasis was initially on a search for treasure, not production of products. English and Dutch colonies later led the way to commerce across the Atlantic, with tobacco, sugar, and cotton suddenly becoming a major part of world trade.

A look at some of the steps required to create a Mars settlement will help us understand at least a little about Mars settlement economics. For a Mars settlement, motivation and economics are interwoven. It is possible for at least a partial business case to be made for the transport of settlers and the materials they will need to initiate some phase of Mars settlement. This includes the current effort to create a large number of reliable, low cost, and reusable super-heavy boosters and spacecraft, able to take payloads of 100 tons or more of cargo and passengers to Mars and land them at the right location. Part of this development and construction cost will be defrayed by commercial and government uses of the same vehicles, such as placing very heavy payloads in LEO and taking equipment and passengers to and around the Moon.

Mar 28, 2020

SpaceX going to the Moon with NASA

Posted by in categories: astronomy, complex systems, disruptive technology, Elon Musk, satellites, space, space travel
Orion and Dragon XL near the Lunar Gateway Credit: NASA

By Bill D’Zio, Originally posted on www.westeastspace.com March 28, 2020

NASA may have sidelined the Lunar Gateway for a return mission to the Moon, but it is not stopping the momentum. NASA has awarded several contracts for the Lunar Gateway including the most recent one to SpaceX. This demonstrates the growing capabilities of New Space companies to capture contracts and complete missions.

This contract award is another critical piece of our plan to return to the Moon sustainably. The Gateway is the cornerstone of the long-term Artemis architecture and this deep space commercial cargo capability integrates yet another American industry partner into our plans for human exploration at the Moon in preparation for a future mission to Mars.NASA Administrator Jim Bridenstine in a press release statement about the award to SpaceX.

NASA Awarded SpaceX the first Artemis Gateway Logistics Services (GLS) contract. The award for resupply services to the Gateway will require delivery of goods to a Near Rectilinear Halo Orbit (NRHO). Not sure what a NRHO orbit is? A NRHO is a highly elliptical orbit that takes about 7 days for each orbit. Want some more details, just click here: Near Rectilinear Halo Orbit (NRHO). There are a few options for NRHO orbits, but NASA is leaning towards the L2 9:2 lunar synodic resonant southerly Near-Rectilinear Halo Orbit (NRHO) which would be the likely location of the lunar Gateway. A simplification of the orbit is shown below.

Continue reading “SpaceX going to the Moon with NASA” »

Mar 28, 2020

Getting Astronauts To Mars Easier Than Magellan’s Journey Across Pacific, Says Historian

Posted by in category: space travel

During this extremely rare epoch of non-travel, it’s worth looking back at Magellan and the Age of Discovery. Exploration and freedom of movement have always come with a price.

Mar 27, 2020

SpaceX stacks third Starship prototype ahead of testing (photos)

Posted by in categories: Elon Musk, space travel

The latest test version of the Mars-colonizing Starship spacecraft, called the SN3, has been stacked at SpaceX’s South Texas facilities, new photos tweeted out by company founder and CEO Elon Musk show.

Mar 27, 2020

Teleportation is Here, But It’s Not What We Expected

Posted by in categories: humor, particle physics, quantum physics, space travel

In 2005, the obituary of physicist Asher Peres in the magazine Physics Today told us that when a journalist asked him if quantum teleportation could transport a person’s soul as well as their body, the scientist replied: “No, not the body, just the soul.” More than just a simple joke, Peres’ response offers a perfect explanation, encoded in a metaphor, of the reality of a process that we have seen countless times in science fiction. In fact, teleportation does exist, although in the real world it is quite different from the famous “Beam me up, Scotty!” associated with the Star Trek series.

Teleportation in real science began to take shape in 1993 thanks to a theoretical study published by Peres and five other researchers in Physical Review Letters, which laid the foundation for quantum teleportation. Apparently, it was co-author Charles Bennett’s idea to associate the proposed phenomenon with the popular idea of teleportation, but there is an essential difference between fiction and reality: in the latter it’s not matter that travels, but rather information, which transfers properties from the original matter to that of the destination matter.

Quantum teleportation is based on a hypothesis described in 1935 by physicist Albert Einstein and his colleagues Boris Podolsky and Nathan Rosen, known as the EPR paradox. As a consequence of the laws of quantum physics, it was possible to obtain two particles and separate them in space so that they would continue to share their properties, as two halves of a whole. Thus, an action on one of them (on A, or Alice, according to the nomenclature used) would instantaneously have an effect on the other (on B, or Bob). This “spooky action at a distance”, in Einstein’s words, would seem capable of violating the limit of the speed of light.

Mar 27, 2020

For His Next Trick, Elon Musk Will Revolutionize HVAC Systems

Posted by in categories: Elon Musk, space travel, sustainability

Because running Tesla and SpaceX and building a new Starship every 72 hours so he can colonize Mars isn’t enough, now Elon Musk would really love to build an efficient and quiet HVAC system for home use, according to Inverse. It could even piggyback the existing work Tesla has done to make heaters for its newest vehicle, the Model Y.

The first few Tesla vehicles used an electric cabin heater to replace a traditional fuel vehicle’s reliance on internal combustion engine heat. Trying to find the right kind of heater has been challenging at times for Tesla, which was faced with reinventing the wheel, so to speak. Before now, engines made the heat as a secondary effect of combustion.

Mar 26, 2020

This is why Elon Musk wanted to avoid Parachutes

Posted by in categories: engineering, space, space travel

By Bill D’Zio Originally published on www.westeastspace.com

Parachutes are plaguing space programs. SpaceX doesn’t like Parachutes. They are difficult to design, hard to package, and easy to damage. The larger the mass of the spacecraft, the more effort to slow down. Larger, more efficient, complex parachute systems are needed. Several failures have hit the industry over the last few years, including SpaceX Crew Dragon, ESA ExoMars, Boeing CST-100, and the NASA Orion to name a few.


How do parachutes work and why are they hard?

The idea of a parachute is simple. All falling objects fall the same when under the same conditions… that is so long as no outside force is exerted on it. So two objects dropped from the same altitude, one a feather and hammer will fall equally. Don’t believe me? NASA tested it on the Moon. During Apollo 15 moon walk, Commander David Scott performed a live demonstration for the television cameras. Commander Scott did the Apollo 15 Hammer and Feather test. He held out a geologic hammer and a Falcon feather and dropped them at the same time. Because there is not an atmosphere on the Moon, they were essentially in a vacuum. With no air resistance force, the feather fell at the same rate as the hammer. Ironically, Apollo 15 had a second demonstration of falling objects when one of the parachutes failed to function as planned.

Apollo 15 parachute Failure Credit NASA

On Earth, and any other planet with an atmosphere, air acts as a resistance force for an object moving through it. We can get more air resistance force by increasing the surface area. Depending on the shape of the object, it’s orientation, and the amount of resistance will increase, and therefore slow the object down. Unbalanced and uncorrected resistance can cause the object to start to turn, twist and tumble. A parachute system is deployed to generate air resistance from the atmosphere. (note that the thicker the atmosphere the more resistance) Parachutes designed for use on Earth will not be the same as a parachute designed for Mars.

Continue reading “This is why Elon Musk wanted to avoid Parachutes” »

Mar 25, 2020

Six Reasons Why Humans Should Return to the Moon

Posted by in categories: education, space travel

Some prime examples of how humanity’s expected return to the lunar surface in the years to come could help life here on Earth.


“That’s one small step for man; one giant leap for mankind.”

Continue reading “Six Reasons Why Humans Should Return to the Moon” »

Mar 25, 2020

COVID19 Impact Part II – SpaceX , SLS and NASA

Posted by in categories: disruptive technology, health, space, space travel

By Bill D’Zio March 25, 2020

SpaceX Dragon
SpaceX Crew Dragon on approach Credit NASA

Part 2 of the Life in Space with COVID19 we will delve into Crew demo-2 where NASA and SpaceX are planning a launch within two months. There are a lot of pre-launch milestones and activities to cover to ensure a safe flight for the Astronauts. If anything goes wrong, there are lives at stake. Now NASA and SpaceX have to contend with another potential setback, COVID19 pandemic. (Click here for part I)

The SpaceX Crew Dragon spacecraft for Demo-2 arrived at the launch site on Feb. 13, 2020. Photo credit: SpaceX

In Part I of why COVID19 pandemic is bad timing for the Space industry, we covered that issues happen because the relationship between complexity, risk, schedule and cost for space missions was not balanced.

Continue reading “COVID19 Impact Part II – SpaceX , SLS and NASA” »

Mar 24, 2020

Coronavirus Pandemic Impact on Space Programs Part I

Posted by in categories: employment, health, space, space travel

By Bill D’Zio March 24, 2020 (Originally posted on www.westeastspace.com)

WestEastSpace mapped out NASA locations on a map of COVID19 impacted areas of USA from www.usafacts.org as of March 23rd, 2020With the launch window for NASA’s Mars Perseverance rover opening in a little less than four months, there are nearly daily pre-launch milestones to complete the rover pre flight activities at the Kennedy Space Center in Cape Canaveral, Florida. Tight schedules on complex missions usually do not mix well. Now NASA has to contend with another challenge. COVID19.

NASA Leadership Assessing Mission Impacts of Coronavirus

The world has come to a standstill and is in the grasps of the COVID-19. The world stock markets have come crashing down 30% as supply chains and companies attempt to deal with government response and public fear. Airlines and hotels have had to contend with decreased travel and lodging requirements. Logistics is impacted as factories in various countries deal with increased difficulty and requirements to obtain goods. Factories are closed leading to shortages for truckers, material movers, cargo agents, and other occupations directly involved in moving goods. Companies shift to working remotely in an attempt to comply with government guidance in attempts to minimize the impact of the virus. One Mars mission has already been sidelined because of COVID19. NASA also needs to contend with these challenges.

Continue reading “Coronavirus Pandemic Impact on Space Programs Part I” »