Menu

Blog

Archive for the ‘space’ category: Page 13

Nov 22, 2024

Demis Hassabis, Nobel Prize winner in Chemistry: ‘We will need a handful of breakthroughs before we reach artificial general intelligence’

Posted by in categories: chemistry, information science, robotics/AI, space, time travel

However, Hassabis’ true breakthrough came just a month ago, when he and two colleagues from DeepMind won the Nobel Prize in Chemistry for their development of AlphaFold, an AI tool capable of predicting the structure of the 200 million known proteins. This achievement would have been nearly impossible without AI, and solidifies Hassabis’ belief that AI is set to become one of the main drivers of scientific progress in the coming years.

Hassabis — the son of a Greek-Cypriot father and a Singaporean mother — reflects on the early days of DeepMind, which he founded in 2010, when “nobody was working on AI.” Over time, machine learning techniques such as deep learning and reinforcement learning began to take shape, providing AI with a significant boost. In 2017, Google scientists introduced a new algorithmic architecture that enabled the development of AGI. “It took several years to figure out how to utilize that type of algorithm and then integrate it in hybrid systems like AlphaFold, which includes other components,” he explains.

“During our first years, we were working in a theoretical space. We focused on games and video games, which were never an end in themselves. It gave us a controlled environment in which to operate and ask questions. But my passion has always been to use AI to accelerate scientific understanding. We managed to scale up to solving a real-world problem, such as protein folding,” recalls the engineer and neuroscientist.

Nov 22, 2024

Mars may have been Habitable much more recently than thought

Posted by in categories: computing, space

Evidence suggests Mars could very well have been teeming with life billions of years ago. Now cold, dry, and stripped of what was once a potentially protective magnetic field, the red planet is a kind of forensic scene for scientists investigating whether Mars was indeed once habitable, and if so, when.

The “when” question in particular has driven researchers in Harvard’s Paleomagnetics Lab in the Department of Earth and Planetary Sciences. A new paper in Nature Communications makes their most compelling case to date that Mars’ life-enabling magnetic field could have survived until about 3.9 billion years ago, compared with previous estimates of 4.1 billion years—so hundreds of millions of years more recently.

The study was led by Griffin Graduate School of Arts and Sciences student Sarah Steele, who has used simulation and computer modeling to estimate the age of the Martian “dynamo,” or global magnetic field produced by convection in the planet’s iron core, like on Earth. Together with senior author Roger Fu, the John L. Loeb Associate Professor of the Natural Sciences, the team has doubled down on a theory they first argued last year that the Martian dynamo, capable of deflecting harmful cosmic rays, was around longer than prevailing estimates claim.

Nov 22, 2024

Astronomers detect a distant young super-Jupiter exoplanet

Posted by in categories: robotics/AI, space

An international team of astronomers has reported the detection of a new super-Jupiter exoplanet as part of the Next Generation Transit Survey (NGTS). The newfound alien world, located some 1,430 light years away, is nearly four times as massive as Jupiter and is estimated to be only millions of years old. The discovery was detailed in a paper published November 13 on the pre-print server arXiv.

NGTS is a wide-field photometric survey focused mainly on the search for Neptune-sized and smaller exoplanets transiting bright stars. The project uses an array of small, fully robotic telescopes at the Paranal Observatory in Chile, operating at red-optical wavelengths. It uses the transit photometry method to find new exoworlds, which precisely measures the dimming of a star to detect the presence of a planet crossing in front of it.

Now, a group of astronomers led by Douglas R. Alves has found another extrasolar world with NGTS photometry. The new planet was identified around NGTS-33—a fast-rotating massive hot star.

Nov 21, 2024

Charting the Cosmic Shoreline: Which Planets Have Atmospheres?

Posted by in category: space

Which of the nearly 6,000 known exoplanets have atmospheres? With help from JWST, astronomers are inching closer to an answer, and new observations of a super-Earth planet around a low-mass star help to define the dividing line between planets with atmospheres and planets without.

How to Find an Atmosphere

With the number of known exoplanets growing steadily larger, a major challenge for astronomers is deciding how to allocate limited telescope time to study these planets further. Rocky planets with atmospheres make promising targets, but it’s not obvious which exoplanets should have atmospheres. Taking cues from the planets in our solar system and the subset of exoplanets that have been studied in detail, researchers have defined the concept of the cosmic shoreline, which separates planets with atmospheres from planets without on the basis of escape velocity — related to a planet’s mass and size — and the amount of starlight the planet receives.

Nov 21, 2024

Will astronauts need to be rescued from the moon? NASA wants to be prepared just in case

Posted by in category: space

Upcoming moon missions will need to plan for how to respond to emergencies on the lunar surface.

Nov 21, 2024

Observations inspect double-lined spectroscopic binary HD 34736

Posted by in categories: chemistry, space

Using various telescopes, an international team of astronomers has conducted a comprehensive study of a double-lined spectroscopic binary known as HD 34736. The study, published November 6 in the Monthly Notices of the Royal Astronomical Society, delivers important insights into the properties of this system.

So far, the majority of binaries have been detected by Doppler shifts in their , hence these systems are called spectroscopic binaries. Observations show that in some spectroscopic binaries, spectral lines from both stars are visible, and these lines are alternately double and single. These systems are known as double-lined spectroscopic binaries (SB2).

HD 34,736 is an SB2 system consisting of two chemically peculiar late B-type , located some 1,215 light years away. Previous of HD 34,736 have found that the system has an extraordinarily strong magnetic field exceeding 4.5 kG. The effective temperatures of the primary and secondary star were found to be 13,700 and 11,500 K, respectively.

Nov 21, 2024

Chandra and Hubble tune into ‘flame-throwing’ Guitar Nebula

Posted by in categories: entertainment, particle physics, space

Normally found only in heavy metal bands or certain post-apocalyptic films, a “flame-throwing guitar” has now been spotted moving through space. Astronomers have captured movies of this extreme cosmic object using NASA’s Chandra X-ray Observatory and Hubble Space Telescope.

The new movie of Chandra (red) and Palomar (blue) data helps break down what is playing out in the Guitar Nebula. X-rays from Chandra show a of energetic matter and , about two light-years or 12 trillion miles long, blasting away from the pulsar (seen as the bright white dot connected to the filament).

Continue reading “Chandra and Hubble tune into ‘flame-throwing’ Guitar Nebula” »

Nov 20, 2024

Carl Sagans Cosmos — Episode 8 — Journeys in Space & Time

Posted by in category: space

Join me on facebook http://www.facebook.com/pages/TheScienceFoundation/277697568961708Cosmos: A Personal Voyage is a thirteen-part television series written…

Nov 20, 2024

Mystery Solved: Magnetars in Massive Galaxies Behind Cosmic Radio Flashes

Posted by in category: space

Researchers have linked the origins of fast radio bursts to magnetars, highly magnetized neutron stars, which often arise from the mergers of massive stars in star-forming galaxies.

By utilizing the Deep Synoptic Array-110, they’ve localized 70 FRBs, discovering that these bursts are more frequent in massive, metal-rich galaxies. This suggests that the environmental conditions conducive to FRB occurrence are also ideal for magnetar formation.

Unveiling the mystery of fast radio bursts.

Nov 20, 2024

TopoLM: brain-like spatio-functional organization in a topographic language model. Researchers have long observed that neurons in the brain tend to be

Posted by in categories: robotics/AI, space

Join us at ploutos.dev.

#AI #topology #language #computation #neuroscience


Researchers have long observed that neurons in the brain tend to be organized in clusters, with neighboring neurons often sharing similar functions. This phenomenon is also seen in the brain’s language system, where certain areas respond to different aspects of language, such as syntax (sentence structure) or semantics (meaning). However, the exact mechanisms behind this organization remain a mystery.

Continue reading “TopoLM: brain-like spatio-functional organization in a topographic language model. Researchers have long observed that neurons in the brain tend to be” »

Page 13 of 1,043First1011121314151617Last