Menu

Blog

Archive for the ‘sustainability’ category: Page 4

Apr 28, 2024

New approach could make reusing captured carbon far cheaper, less energy-intensive

Posted by in categories: chemistry, climatology, economics, sustainability

Engineers at Georgia Tech have designed a process that converts carbon dioxide removed from the air into useful raw material that could be used for new plastics, chemicals, or fuels.

Their approach dramatically reduces the cost and energy required for these (DAC) systems, helping improve the economics of a process the researchers said will be critical to addressing .

The key is a new kind of catalyst and electrochemical reactor design that can be easily integrated into existing DAC systems to produce useful carbon monoxide (CO) gas. It’s one of the most efficient such design ever described in , according to lead researcher Marta Hatzell and her team. They have published the details in Energy & Environmental Science.

Apr 28, 2024

World’s biggest 3D printer whirs into action

Posted by in category: sustainability

It’s hoped giant device will be able to print homes, bridges, boats and wind turbines.

Apr 28, 2024

MG unveils world’s best drag coefficient electric hypercar concept

Posted by in categories: sustainability, transportation

According to MG Motor, the EXE181 can reach a top speed of 257 mph. It accelerates 0-62mph in 1.91 seconds and features a drag coefficient (Cd) of 0.181.

Apr 28, 2024

Honda to build $11 billion electric vehicle hub in Canada

Posted by in categories: sustainability, transportation

Honda and its joint venture partners plan to invest $11 billion in Ontario, Canada, to create a “comprehensive EV value chain,” the automaker announced.

Apr 27, 2024

Biologists Construct Groundbreaking Tree of Life Using 1.8 Billion Letters of Genetic Code

Posted by in categories: climatology, genetics, sustainability

A recent study published in the journal Nature by an international team of 279 scientists, including three biologists from the University of Michigan, provides the latest insights into the flowering plant tree of life.

Using 1.8 billion letters of genetic code from more than 9,500 species covering almost 8,000 known flowering plant genera (ca. 60%), this achievement sheds new light on the evolutionary history of flowering plants and their rise to ecological dominance on Earth.

Led by scientists at the Royal Botanic Gardens, Kew, the research team believes the data will aid future attempts to identify new species, refine plant classification, uncover new medicinal compounds, and conserve plants in the face of climate change and biodiversity loss.

Apr 27, 2024

Finding the Catalyst for a More Sustainable Future

Posted by in categories: materials, sustainability

Scientists explore alternative catalyst materials for affordable, stable hydrogen fuel cells.

Apr 27, 2024

Battery Recycling Shatters the Myth of Electric Vehicle Waste

Posted by in categories: sustainability, transportation

Battery recycling drops from ~25,500 miles to ~15,000 miles the CO2 breakeven point for EVs compared to ICE.


Are electric cars really that much better for the environment? With recycling, the question is a no-brainer.

Apr 27, 2024

A New Cathode for Rechargeable Magnesium Batteries

Posted by in categories: chemistry, sustainability

This article is part of a series of pieces on advances in sustainable battery technologies that Physics Magazine is publishing to celebrate Earth Week 2024. See also: Q&A: Electrochemists Wanted for Vocational Degrees; Research News: Lithium-Ion “Traffic Jam” Behind Reduced Battery Performance; Q&A: The Path to Making Batteries Green; News Feature: Sodium Batteries as a Greener Lithium Substitute.

Since the first prototype made its debut in 2000, rechargeable magnesium batteries have continued to be both technologically attractive and commercially out of reach. The attraction arises from magnesium’s advantages over lithium: it is 1,000 times more abundant in Earth’s crust and is chemically less hazardous. The unrealized commercialization is largely down to the difficulty in identifying a material to serve as an effective and robust cathode. Tomoya Kawaguchi of Tohoku University in Japan and his collaborators may now have solved that problem through their demonstration of a material that satisfies one of the most important requirements of a good cathode: it can reversibly accept and release ions over repeated charging cycles [1].

The discharge of an electrochemical battery releases electrons that flow through the connected circuit. It also releases ions from the battery’s anode that flow through the battery’s electrolyte, in the opposite direction to the electrons, and then lodge in the cathode. The flows reverse directions during recharging. In a lithium-ion battery, the cathode is made from a lithium oxide and takes the form of either a layered material or a crystalline solid known as a spinel.

Apr 27, 2024

The Path to Making Batteries Green

Posted by in category: sustainability

For Shirley Meng, the biggest barrier to achieving sustainable batteries is sociological not technological, requiring a change in mindset about how we consume and dispose of batteries.

Apr 27, 2024

Lithium-Ion “Traffic Jam” Behind Reduced Battery Performance

Posted by in categories: sustainability, transportation

Real-time in situ x-ray observations of new nickel-rich lithium-ion batteries reveal that reduced performance comes from lithium ions getting trapped in the cathode.

This article is part of a series of pieces on advances in sustainable battery technologies that Physics Magazine is publishing to celebrate Earth Week 2024. See also: Q&A: Electrochemists Wanted for Vocational Degrees; Q&A: The Path to Making Batteries Green; News Feature: Sodium as a Green Substitute for Lithium in Batteries; Research News: A New Cathode for Rechargeable Magnesium Batteries.

Electric vehicles are picking up visibility in the public eye. But their adoption is slowed down by batteries that degrade over time, an issue commercial ventures are especially keen on addressing as they adopt increasingly nickel-rich cathodes—the cathode du jour for high-end electric vehicles. The substitution of nickel for cobalt in earlier versions of these cathodes can improve their performance, but it also accelerates degradation. Earlier this year, Louis Piper, University of Warwick, UK, and his colleagues devised and demonstrated an x-ray technique that can examine industry-grade versions of nickel-rich lithium-ion batteries in real time [1]. Their observations help to narrow down why these batteries degrade and lead to suggestions for how to prolong battery lifespans.

Page 4 of 59212345678Last