Menu

Blog

Page 56

Oct 20, 2024

The Rapid ASKAP Continuum Survey I: Design and first results

Posted by in categories: futurism, space

The Rapid ASKAP Continuum Survey (RACS) is the first large-area survey to be conducted with the full 36-antenna Australian Square Kilometre Array Pathfinder (ASKAP) telescope. RACS will provide a shallow model of the ASKAP sky that will aid the calibration of future deep ASKAP surveys. RACS will cover the whole sky visible from the ASKAP site in Western Australia and will cover the full ASKAP band of 700‑1800 MHz. The RACS images are generally deeper than the existing NRAO VLA Sky Survey and Sydney University Molonglo Sky Survey radio surveys and have better spatial resolution. All RACS survey products will be public, including radio images (with $\sim$15 arcsec resolution) and catalogues of about three million source components with spectral index and polarisation information. In this paper, we present a description of the RACS survey and the first data release of 903 images covering the sky south of declination $+41^\circ$ made over a 288-MHz band centred at 887.5 MHz.

Oct 20, 2024

Light From Behind A Black Hole Observed For The First Time, Confirming Einstein’s Theory

Posted by in categories: cosmology, physics

All our science, measured against reality, is primitive and childlike – and yet it is the most precious thing we have. – Albert Einstein (1879−1955)

Astronomers have observed light bending around a black hole, a phenomenon predicted by Einstein’s theory of general relativity. By studying X-rays from a black hole in the Zwicky 1 galaxy, scientists detected unexpected “light echoes” coming from behind the black hole, proving that the black hole’s gravity was curving space-time and allowing light to bend around it.

Although this effect was predicted over a century ago, it’s the first time astronomers have witnessed it. The researchers now aim to investigate how black hole coronas produce intense X-ray flares and continue studying space-time distortion.

Oct 20, 2024

Astronomers Witness A Star Dragging Space-Time Around With It

Posted by in categories: physics, space

A spinning white dwarf drags space-time around it 100 million times more powerfully than Earth.

Astronomers have recently provided compelling evidence of a star dragging space-time, showcasing one of Einstein’s lesser-known predictions. This phenomenon, known as “frame-dragging,” describes how a spinning object distorts the very fabric of space-time around it. While this effect is nearly imperceptible in everyday life, even on a planetary scale, certain cosmic conditions make it much more noticeable. A study published in Science details these observations using a radio telescope to study a rare pair of compact stars.

Continue reading “Astronomers Witness A Star Dragging Space-Time Around With It” »

Oct 20, 2024

NASA Shuts Down Quantum Computer After Unexpected Results

Posted by in categories: computing, quantum physics, space travel

NASA has temporarily halted operations of its quantum computer after it produced unexpected results. The computer, which is still under development, is designed to simulate complex systems such as those found in space. However, during a recent test, the computer-generated results that were inconsistent with known physical laws.

NASA scientists are currently investigating the cause of the anomaly. They are also working to develop safeguards to prevent similar incidents from happening in the future.

The shutdown of the quantum computer is a setback for NASA’s efforts to develop new technologies for space exploration. However, it is also an opportunity to learn more about the potential of quantum computing.

Oct 20, 2024

Investigating the impact of ultralight dark matter on gravitational wave signals

Posted by in categories: cosmology, physics

A recent study in Physical Review Letters explores the effects of ultralight dark matter in extreme-mass-ratio inspirals (EMRIs), which could be detected by future space-based gravitational wave detectors like LISA (Laser Interferometer Space Antenna).

Oct 20, 2024

Study explores how acoustic elements influence perceptions of music being out of tune

Posted by in category: media & arts

When we listen to a song or musical performance, out-of-tune singers or instruments are generally perceived as unpleasant for listeners. While it is well-established that mistuning can reduce the enjoyment of music, the processes influencing how humans perceive mistuning have not yet been fully delineated.

Researchers at the University of Minnesota recently carried out a study aimed at better understanding factors influencing the extent to which individuals can perceive mistuning in natural music. Their findings, published in Communications Psychology, highlight acoustic elements that influence the perception of dissonance when hearing out-of-tune singing voices or instruments.

“An out-of-tune singer or instrument can ruin the enjoyment of music,” Sara M. K. Madsen and Andrew J. Oxenham wrote in their paper. “However, there is disagreement on how we perceive mistuning in natural music settings. To address this question, we presented listeners with in-tune and out-of-tune passages of two-part music and manipulated the two primary candidate acoustic cues: beats (fluctuations caused by interactions between nearby frequency components) and inharmonicity (non-integer harmonic frequency relationships) across seven experiments.”

Oct 20, 2024

All-optical switch device paves way for faster fiber-optic communication

Posted by in category: internet

Modern high-speed internet uses light to quickly and reliably transmit large amounts of data through fiber-optic cables, but currently, light signals hit a bottleneck when data processing is necessary. For that, they must convert into electrical signals for processing before further transmission.

Oct 20, 2024

Stretchable transistors used in wearable devices enable in-sensor edge computing

Posted by in categories: biotech/medical, chemistry, computing, wearables

Organic electrochemical transistors (OECTs) are neuromorphic transistors made of carbon-based materials that combine both electronic and ionic charge carriers. These transistors could be particularly effective solutions for amplifying and switching electronic signals in devices designed to be placed on the human skin, such as smart watches, trackers that monitor physiological signals and other wearable technologies.

In contrast with conventional neuromorphic transistors, OECTs could operate reliably in wet or humid environments, which would be highly advantageous for both medical and wearable devices. Despite their potential, most existing OECTs are based on stiff materials, which can reduce the comfort of wearables and thus hinder their large-scale deployment.

Researchers at the University of Hong Kong have developed a new wearable device based on stretchable OECTs that can both perform computations and collect signals from the surrounding environment. Their proposed system, presented in a paper published in Nature Electronics, could be used to realize in-sensor edge computing on a flexible wearable device that is comfortable for users.

Oct 20, 2024

Baffling Scientists: Why Did Millions of People Feel Shaking in New York City?

Posted by in category: energy

The Tewksbury earthquake’s minimal local damage but widespread impact was due to its rupture direction, funneling shaking from New Jersey towards New York City, with the anomaly highlighted in studies on seismic energy distribution.

A magnitude 4.8 earthquake in Tewksbury startled millions across the U.S. East Coast, marking the strongest recorded tremor in New Jersey since 1900.

But researchers noted something else unusual about the earthquake: why did so many people 40 miles away in New York City report strong shaking, while damage near the earthquake’s epicenter appeared minimal?

Oct 20, 2024

Men and Women Use Different Pain Relief Pathways, New Study Show

Posted by in category: biotech/medical

A recent study from the University of California San Diego School of Medicine, investigating meditation as a treatment for chronic lower back pain, has revealed that men and women use different biological mechanisms for pain relief. Men primarily rely on the release of endogenous opioids, the body’s natural painkillers, whereas women depend on alternative, non-opioid pathways to manage pain.

Synthetic opioid drugs, such as morphine and fentanyl, are the most powerful class of painkilling drugs available. Women are known to respond poorly to opioid therapies, which use synthetic opioid molecules to bind to the same receptors as naturally occurring endogenous opioids. This aspect of opioid drugs helps explain why they are so powerful as painkillers, but also why they carry a significant risk of dependence and addiction.

“Dependence develops because people start taking more opioids when their original dosage stops working,” said Fadel Zeidan, Ph.D., professor of anesthesiology and Endowed Professor in Empathy and Compassion Research at UC San Diego Sanford Institute for Empathy and Compassion. “Although speculative, our findings suggest that maybe one reason that females are more likely to become addicted to opioids is that they’re biologically less responsive to them and need to take more to experience any pain relief.”

Page 56 of 11,929First5354555657585960Last