Menu

Blog

Archive for the ‘cosmology’ category: Page 3

Dec 13, 2024

Max Tegmark: Will AI Surpass Human Intelligence?

Posted by in categories: cosmology, mathematics, physics, robotics/AI

Expand your scientific horizon with Brilliant! 🧠 Use my link https://brilliant.org/DrBrianKeating/ to get 20% off the annual premium subscription.

Will AI ever surpass human intelligence, discover new laws of physics, and solve the greatest mysteries of our universe?

Continue reading “Max Tegmark: Will AI Surpass Human Intelligence?” »

Dec 13, 2024

AI tool amplifies signals by 1,000 times to boost dark matter research

Posted by in categories: cosmology, particle physics, robotics/AI

The instrument uses light to move atoms to measure incredibly small forces.


A self-correcting atom interferometer amplifies signals, aiding detection of ultra-weak forces from dark matter, dark energy, and waves.

Dec 12, 2024

How to catch a supernova explosion before it happens—and what we can learn from it

Posted by in categories: cosmology, nuclear energy

Stars are born, live and die in spectacular ways, with their deaths marked by one of the biggest known explosions in the universe. Like a campfire needs wood to keep burning, a star relies on nuclear fusion—primarily using hydrogen as fuel—to generate energy and counteract the crushing force of its own gravity.

But when the fuel runs out, the outward pressure vanishes, and the star collapses under its own weight, falling at nearly the speed of light, crashing into the core and rebounding outward. Within seconds, the star is violently blown apart, hurling stellar debris into space at speeds thousands of times faster than the most powerful rocket ever built. This is a .

Astronomers aim to understand what types of stars produce different kinds of explosions. Do more result in brighter explosions? What happens if a star is surrounded by dust and gas when it explodes?

Dec 12, 2024

Google Says It Appears to Have Accessed Parallel Universes

Posted by in categories: computing, cosmology, quantum physics

Google argued that its new uber-powerful quantum computer is so fast that it may have tapped a parallel universe.

Dec 12, 2024

Welcome to The Quantum Memory Matrix — Hypothesis Offers New Insight Into Black Hole Information Paradox

Posted by in categories: computing, cosmology, mathematics, quantum physics

A new hypothesis suggests that the very fabric of space-time may act as a dynamic reservoir for quantum information, which, if it holds, would address the long-standing Black Hole Information Paradox and potentially reshape our understanding of quantum gravity, according to a research team including scientists from pioneering quantum computing firm, Terra Quantum and Leiden University.

Published in Entropy, the Quantum Memory Matrix (QMM) hypothesis offers a mathematical framework to reconcile quantum mechanics and general relativity while preserving the fundamental principle of information conservation.

The study proposes that space-time, quantized at the Planck scale — a realm where the physics of quantum mechanics and general relativity converge — stores information from quantum interactions in “quantum imprints.” These imprints encode details of quantum states and their evolution, potentially enabling information retrieval during black hole evaporation through mechanisms like Hawking radiation. This directly addresses the Black Hole Information Paradox, which highlights the conflict between quantum mechanics — suggesting information cannot be destroyed — and classical black hole descriptions, where information appears to vanish once the black hole evaporates.

Dec 12, 2024

Advanced atom interferometer could help with ‘the embarrassing problem’ of dark matter

Posted by in categories: cosmology, particle physics

Assuming dark matter exists, its interactions with ordinary matter are so subtle that even the most sensitive instruments cannot detect them. In a new study, Northwestern University physicists now introduce a highly sensitive new tool, which amplifies incredibly faint signals by 1,000 times—a 50-fold improvement over what was previously possible.

Called an atom interferometer, the incredibly precise tool manipulates atoms with light to measure exceptionally tiny forces. But, unlike other atom interferometers, which are limited by the imperfections in the light itself, the new tool self-corrects for these imperfections to reach record-breaking levels of precision.

By boosting imperceptible signals to perceptible levels, the technological advance could help scientists who are hunting for ultra-weak forces emitted from a variety of evasive phenomena, including , and in unexplored frequency ranges.

Dec 11, 2024

Google says its new quantum chip indicates that multiple universes exist

Posted by in categories: computing, cosmology, quantum physics

Google on Monday announced Willow, its latest, greatest quantum computing chip. The speed and reliability performance claims Google’s made about this chip were newsworthy in themselves, but what really caught the tech industry’s attention was an even wilder claim tucked into the blog post about the chip.

Google Quantum AI founder Hartmut Neven wrote in his blog post that this chip was so mind-boggling fast that it must have borrowed computational power from other universes.

Ergo the chip’s performance indicates that parallel universes exist and “we live in a multiverse.”

Dec 11, 2024

Could Recent Discoveries in Gravity Fundamentally Change Physics?

Posted by in categories: cosmology, particle physics, quantum physics, satellites

For centuries, gravity has been one of the most captivating and puzzling forces in the universe. Thanks to the groundbreaking work of Isaac Newton and Albert Einstein, we have a robust understanding of how gravity governs the behavior of planets, stars, and even galaxies. Yet, when we look at extreme scenarios, such as the intense gravitational fields near black holes or the mysterious quantum world, our understanding starts to break down. New research and theories, however, suggest that the key to solving these mysteries may finally be within reach.

In our daily lives, gravity is a constant presence. It’s what keeps us grounded to the Earth, dictates the orbits of planets, and ensures that satellites stay in orbit around our planet. Thanks to Einstein’s general theory of relativity, scientists have been able to make highly accurate predictions about the movement of celestial bodies, calculate tides, and even send probes to the farthest reaches of the solar system.

Yet, when gravity’s effects become more extreme—such as inside black holes or during the birth of the universe—it becomes much more difficult to model. Similarly, when we turn our attention to the quantum realm of subatomic particles, Einstein’s theory breaks down. To understand phenomena like the Big Bang or the inner workings of black holes, physicists have long known that we need a new, unified theory of gravity.

Dec 11, 2024

Forget Black Holes — White Holes Would Break Your Puny Brain

Posted by in categories: cosmology, evolution, information science, neuroscience, singularity

Black holes have long fascinated scientists, known for their ability to trap anything that crosses their event horizon. But what if there were a counterpart to black holes? Enter the white hole—a theoretical singularity where nothing can enter, but energy and matter are expelled with immense force.

First proposed in the 1970s, white holes are essentially black holes in reverse. They rely on the same equations of general relativity but with time flowing in the opposite direction. While a black hole pulls matter in and lets nothing escape, a white hole would repel matter, releasing high-energy radiation and light.

Despite their intriguing properties, white holes face significant scientific challenges. The laws of thermodynamics, particularly entropy, make it improbable for matter to move backward in time, as white holes would require. Additionally, introducing a singularity into the Universe without a preceding collapse defies current understanding of cosmic evolution.

Dec 11, 2024

Groundbreaking study suggests our universe is an expanding bubble in a higher dimension

Posted by in category: cosmology

The Bubble Universe: A Bold New Theory

Researchers at Uppsala University in Sweden have introduced a revolutionary theory suggesting that our Universe exists as a four-dimensional bubble within a higher-dimensional space. This bubble concept is part of an attempt to unravel the mystery of dark energy, the enigmatic force causing the Universe’s rapid expansion.

Page 3 of 42312345678Last