Menu

Blog

Archive for the ‘genetics’ category: Page 125

Mar 25, 2023

Writing the Rules on CRISPR Activation

Posted by in categories: biotech/medical, genetics, life extension

The researchers add that these data demonstrate that CRISPRa is generally applicable across chromatin states and cell types, and highlights the factors that impact the degree of gene activation and how easy it is to reproduce the effects. Understanding these factors is important in the design and analysis of CRISPRa screens, which are used to look for genes involved in genetic diseases, the team points out.

Further study is required to continue to add to these rules and to see whether different CRISPRa or CRISPR interference techniques behave in a similar way.

“Our research has established a system for reporting the effectiveness of CRISPR activation in stem cells, allowing us to gain a better understanding of how CRISPRa works in multiple cell states,” says Qianxin Wu, PhD, first author from Wellcome Sanger. “We also showed that CRISPR gene activation is powerful enough to induce stem cells to differentiate into other cell states. This suggests that CRISPRa screens can be used to search for genes involved in cellular processes or to generate more accurate models of cell types in the body, aiding research into genetic diseases and regenerative medicine.”

Mar 25, 2023

Important step towards accurate use of stem cell–based disease models

Posted by in categories: biotech/medical, genetics, neuroscience

Induced pluripotent stem cells offer great therapeutic potential and are a valuable tool for understanding how different diseases develop. New research shows that such stem cell lines should be regularly screened for genetic mutations to ensure the accuracy of the disease models.

In the past 10 years, scientists have learned to create induced (iPSC) from ordinary cells by genetic reprogramming. These cells are widely used to study diseases, as they can be differentiated to almost any cell type of the body, and they can be generated from any individual. However, a key remaining methodological challenge is that the differentiation process is subject to major technical variation for mostly unknown reasons.

HiLIFE Tenure Track Professor Helena Kilpinen and her group at the University of Helsinki use for studying the biological mechanisms of neurodevelopmental and other brain-related diseases.

Mar 25, 2023

Michael Levin: Epigenetic Adaptation, Bioelectricity, Anatomical Compiler — Learning with Lowell 170

Posted by in categories: biotech/medical, computing, genetics, life extension, neuroscience

Michael Levin is a biologist at Tufts University working on novel ways to understand and control complex pattern formation in biological systems.

Michael Levin links.
Michael’s Twitter: https://twitter.com/drmichaellevin.
Michael’s Website: https://drmichaellevin.org.

Continue reading “Michael Levin: Epigenetic Adaptation, Bioelectricity, Anatomical Compiler — Learning with Lowell 170” »

Mar 24, 2023

Gene therapy: Everything you need to know about the DNA-tweaking treatments

Posted by in categories: biotech/medical, genetics

Gene therapy has been headline news in recent years, in part due to the rapid development of biotechnology that enables doctors to administer such treatments. Broadly, gene therapies are techniques used to treat or prevent disease by tweaking the content or expression of cells’ DNA, often by replacing faulty genes with functional ones.

The term “gene therapy” sometimes appears alongside misinformation about mRNA vaccines, which include the Pfizer and Moderna COVID-19 vaccines. These vaccines contain mRNA, a genetic cousin of DNA, that prompts cells to make the coronavirus “spike protein.” The vaccines don’t alter cells’ DNA, and after making the spike, cells break down most of the mRNA. Other COVID-19 shots include the viral vector vaccines made by AstraZeneca and Johnson & Johnson, which deliver DNA into cells to make them build spike proteins. The cells that make spike proteins, using instructions from either mRNA or viral vector vaccines, serve as target practice for the immune system, so they don’t stick around long. That’s very, very different from gene therapy, which aims to change cells’ function for the long-term.

Mar 24, 2023

Cryo-electron microscopy captures structure of a protein pump

Posted by in categories: biotech/medical, genetics, neuroscience

Hailey-Hailey disease is a rare, inherited condition characterized by patches of blisters appearing mainly in the skin folds of the arm pits, groin and under the breasts. It is caused by a mutation in the gene that codes for a specific protein involved in the transportation of calcium and manganese ions from the cell cytoplasm and into a sac-like organelle called the Golgi apparatus.

Scientists at Tohoku University, together with colleagues in Japan, have uncovered some aspects of this ’s structure that could help researchers understand how it works. The findings, published in the journal Science Advances, help build the foundations for research into finding treatments for Hailey-Hailey disease and other neurodegenerative conditions.

The protein the team studied is called secretory pathway Ca2+/Mn2+-ATPase, or SPCA for short. It is located in the Golgi apparatus, a cellular sac-like structure that plays a crucial role in protein quality control before they are released into cells. The Golgi apparatus also acts like a sort of calcium ion storage container. Calcium ions are vital for cell signaling processes and are important for proteins to function properly, so maintaining the right calcium ion balance inside cells is necessary for their day-to-day activities.

Mar 24, 2023

The Rise Of Genetic Engineering | Gene-Editing | Documentary

Posted by in categories: bioengineering, biotech/medical, education, food, genetics

Genetic Engineering extends far beyond the controversial news headlines that obsess over ‘designer babies’. In the science community, gene-editing tools like CRISPR and PRIME editing will do nothing less than save the planet.

The Rise Of Genetic Engineering (2022)
Writers: Kyle McCabe, Christopher Webb Young.
Stars: Rodolphe Barrangou, George Church, Mary Beth Dallas.
Genre: Documentary.
Country: United States.
Language: English.
Release Date: August 24, 2022 (United States)

Continue reading “The Rise Of Genetic Engineering | Gene-Editing | Documentary” »

Mar 23, 2023

The Hidden Genes That Make Us Human

Posted by in category: genetics

Check out Brilliant here: https://brilliant.org/Eons.

In the search for the genes that make us human, some of the most important answers were hiding not in the genes themselves, but in what was once considered genomic junk.

Continue reading “The Hidden Genes That Make Us Human” »

Mar 23, 2023

Researchers detail groundbreaking Angelman syndrome development

Posted by in categories: biotech/medical, genetics, neuroscience

Researchers at Texas A&M University have developed the first molecular therapeutic for Angelman syndrome to advance into clinical development.

In a new article, published today in Science Translational Medicine, Dr. Scott Dindot, an associate professor and EDGES Fellow in the Texas A&M School of Veterinary Medicine and Biomedical Sciences’ (VMBS) Department of Veterinary Pathobiology, and his team share the process through which they developed this novel therapeutic candidate, also known as 4.4.PS.L, or GTX-102. Dindot is also the executive director of molecular genetics at Ultragenyx, which is leading the development of GTX-102.

Angelman syndrome (AS) is a devastating, rare neurogenetic disorder that affects approximately 1 in 15,000 per year; the disorder is triggered by a loss of function of the maternal UBE3A gene in the brain, causing , absent speech, movement or balance disorder, and seizures.

Mar 23, 2023

Telomere shortening—a sign of cellular aging—linked to signs of Alzheimer’s in brain scans

Posted by in categories: biotech/medical, genetics, life extension, neuroscience

Changes in the brain caused by Alzheimer’s disease are associated with shortening of the telomeres—the protective caps on the ends of chromosomes that shorten as cells age—according to a new study led by Anya Topiwala of Oxford Population Health, part of the University of Oxford, UK, published March 22 in the open-access journal PLOS ONE.

Telomeres on chromosomes protect DNA from degrading, but every time a cell divides, the telomeres lose some of their length. Short telomeres are a sign of stress and cellular aging, and are also associated with a higher risk of neurological and psychiatric disorders. Currently, little is known about the links between and changes that occur in the brains of people with neurological conditions. Understanding those relationships could offer insights into the biological mechanisms that cause neurodegenerative disorders.

In the new study, researchers compared telomere length in to results from brain MRIs and from more than 31,000 participants in the UK Biobank, a large-scale biomedical database and research resource containing anonymized genetic, lifestyle and from half a million UK participants.

Mar 21, 2023

NAD Test #3: Impact of 1000 mg NMN/d?

Posted by in categories: biotech/medical, genetics

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links:
NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/
Use Code: ConquerAging At Checkout.

Continue reading “NAD Test #3: Impact of 1000 mg NMN/d?” »