Menu

Blog

Archive for the ‘genetics’ category: Page 139

Apr 11, 2023

Ribozyme-mediated RNA synthesis and replication in a model Hadean microenvironment

Posted by in categories: biological, chemistry, genetics, robotics/AI

Enzyme-catalyzed replication of nucleic acid sequences is a prerequisite for the survival and evolution of biological entities. Before the advent of protein synthesis, genetic information was most likely stored in and replicated by RNA. However, experimental systems for sustained RNA-dependent RNA-replication are difficult to realise, in part due to the high thermodynamic stability of duplex products and the low chemical stability of catalytic RNAs. Using a derivative of a group I intron as a model for an RNA replicase, we show that heated air-water interfaces that are exposed to a plausible CO2-rich atmosphere enable sense and antisense RNA replication as well as template-dependent synthesis and catalysis of a functional ribozyme in a one-pot reaction. Both reactions are driven by autonomous oscillations in salt concentrations and pH, resulting from precipitation of acidified dew droplets, which transiently destabilise RNA duplexes. Our results suggest that an abundant Hadean microenvironment may have promoted both replication and synthesis of functional RNAs.

© 2023. The Author(s).

Conflict of interest statement.

Apr 11, 2023

RNA-Catalyzed Polymerization of Deoxyribose, Threose, and Arabinose Nucleic Acids

Posted by in categories: biotech/medical, evolution, genetics

An RNA-dependent RNA polymerase ribozyme that was highly optimized through in vitro evolution for the ability to copy a broad range of template sequences exhibits promiscuity toward other nucleic acids and nucleic acid analogues, including DNA, threose nucleic acid (TNA), and arabinose nucleic acid (ANA). By operating on various RNA templates, the ribozyme catalyzes multiple successive additions of DNA, TNA, or ANA monomers, although with reduced efficiency compared to RNA monomers. The ribozyme can also copy DNA or TNA templates to complementary RNAs, and to a lesser extent it can operate when both the template and product strands are composed of DNA, TNA, or ANA. These results suggest that polymerase ribozymes, which are thought to have replicated RNA genomes during the early history of life, could have transferred RNA-based genetic information to and from DNA, enabling the emergence of DNA genomes prior to the emergence of proteins. In addition, genetic systems based on nucleic acid-like molecules, which have been proposed as precursors or contemporaries of RNA-based life, could have been operated upon by a promiscuous polymerase ribozyme, thus enabling the evolutionary transition between early genetic systems.

Keywords: RNA world; XNA; origins of life; polymerase; reverse transcriptase; ribozyme.

Apr 11, 2023

Synthetic genetic polymers capable of heredity and evolution

Posted by in categories: biotech/medical, evolution, genetics

Genetic information storage and processing rely on just two polymers, DNA and RNA, yet whether their role reflects evolutionary history or fundamental functional constraints is currently unknown. With the use of polymerase evolution and design, we show that genetic information can be stored in and recovered from six alternative genetic polymers based on simple nucleic acid architectures not found in nature [xeno-nucleic acids (XNAs)]. We also select XNA aptamers, which bind their targets with high affinity and specificity, demonstrating that beyond heredity, specific XNAs have the capacity for Darwinian evolution and folding into defined structures. Thus, heredity and evolution, two hallmarks of life, are not limited to DNA and RNA but are likely to be emergent properties of polymers capable of information storage.

Apr 10, 2023

Age Reversal: 10 Ways It Will Change The World

Posted by in categories: augmented reality, bioengineering, business, genetics, life extension, robotics/AI, transhumanism

https://youtube.com/watch?v=I3WVc9iLi_s

This video explores Age Reversal and 10 ways they will change the world. Watch this next video about digital immortality: https://youtu.be/sZdWN9pbbew.
► Udacity: Up To 75% Off All Courses (Biggest Discount Ever): https://bit.ly/3j9pIRZ
► Jasper AI: Write 5x Faster With Artificial Intelligence: https://bit.ly/3MIPSYp.

Official Discord Server: https://discord.gg/R8cYEWpCzK
Patreon Page: https://www.patreon.com/futurebusinesstech.

Continue reading “Age Reversal: 10 Ways It Will Change The World” »

Apr 9, 2023

Resting Heart Rate, Heart Rate Variability: Is Q1 2023 Better Than 2022?

Posted by in categories: biotech/medical, genetics

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links:
NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/
Use Code: ConquerAging At Checkout.

Continue reading “Resting Heart Rate, Heart Rate Variability: Is Q1 2023 Better Than 2022?” »

Apr 8, 2023

How a worm’s embryonic cells change its development potential

Posted by in categories: biotech/medical, genetics

Researchers have spotted how specific proteins within the chromosomes of roundworms enable their offspring to produce specialized cells generations later, a startling finding that upends classical thinking that hereditary information for cell differentiation is mostly ingrained within DNA and other genetic factors.

The Johns Hopkins University team reports for the first time the mechanisms by which a protein known as H3 controls when and how worm embryos produce both highly specific cells and , cells that can turn certain genes on and off to produce varying kinds of body tissue. The details are published today in Science Advances.

The new research could shed light on how mutations associated with these proteins influence various diseases. In children and young adults, for example, histone H3 is closely associated with various cancers.

Apr 4, 2023

Genetic analysis tool developed to improve cancer modeling

Posted by in categories: bioengineering, biotech/medical, genetics, health

Lifestyle behaviors such as eating well and exercising can be significant factors in one’s overall health. But the risk of developing cancer is predominantly at the whim of an individual’s genetics.

Our bodies are constantly making copies of our to produce new cells. However, there are occasional mistakes in those copies, a phenomenon geneticists call mutation. In some cases, these mistakes can alter proteins, fuse genes and change how much a gene gets copied, ultimately impacting a person’s risk of developing cancer. Scientists can better understand the impact of mutations by developing predictive models for tumor activity.

Christopher Plaisier, an assistant professor of biomedical engineering in the Ira A. Fulton Schools of Engineering at Arizona State University, is developing a called OncoMerge that uses genetic data to improve cancer modeling technology.

Apr 2, 2023

A Disease Reversal Therapy That No Body Try Before

Posted by in categories: biotech/medical, cryonics, genetics, life extension

Previously Fahy has reported as much as a 15 year epigenetic clock reset. Again though, this won’t get you beyond your maximum natural limit, but younger and healthier now leads to the next bridge.


Dr Greg Fahy talks about the thymus magic. What are the out of expectation benefits of reprogramming our thymus(Not TRIIM or TRIIM-X) in this short clip.

Continue reading “A Disease Reversal Therapy That No Body Try Before” »

Apr 2, 2023

Serine + Vitamin B6: The Best Way To Reduce Homocysteine? (Also, Homocysteine Activates mTORC1)

Posted by in categories: biotech/medical, genetics

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links:
NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/
Use Code: ConquerAging At Checkout.

Continue reading “Serine + Vitamin B6: The Best Way To Reduce Homocysteine? (Also, Homocysteine Activates mTORC1)” »

Apr 2, 2023

Predicting neuroblastoma outcomes with molecular evolution

Posted by in categories: biotech/medical, evolution, genetics, mathematics

A research team led by the German Cancer Research Center in Heidelberg, Germany, has discovered that the genetic sequence of a tumor can be read like a molecular clock, traced back to its most recent common ancestor cell. Extracting the duration of tumor evolution can give an accurate predictor of neuroblastoma outcomes.

In a paper published in Nature Genetics titled “Neuroblastoma arises in early fetal development and its evolutionary duration predicts outcome,” the team details the steps they took in identifying a genomic clock tested against a sequenced population combined with analysis and mathematical modeling, to identify evolution markers, traceability and a likely origin point of infant neuroblastomas.

Cancer cells start out life as heroic healthy tissues, with the sort of all for one, one for all, throw yourself on a grenade to save your mates–type attitude that is taking place throughout the body every day. At some point, something goes wrong, and a good cell goes bad.