Menu

Blog

Archive for the ‘nanotechnology’ category: Page 3

Nov 8, 2024

MIT Scientists Develop New Way To Treat the Brain — Without Invasive Implants or Genetic Tweaks

Posted by in categories: bioengineering, biotech/medical, genetics, nanotechnology, neuroscience

Novel magnetic nanodiscs could provide a much less invasive way of stimulating parts of the brain, paving the way for stimulation therapies without implants or genetic modification, MIT researchers report.

The scientists envision that the tiny discs, which are about 250 nanometers across (about 1/500 the width of a human hair), would be injected directly into the desired location in the brain. From there, they could be activated at any time simply by applying a magnetic field outside the body. The new particles could quickly find applications in biomedical research, and eventually, after sufficient testing, might be applied to clinical uses.

The development of these nanoparticles is described in the journal Nature Nanotechnology, in a paper by Polina Anikeeva, a professor in MIT’s departments of Materials Science and Engineering and Brain and Cognitive Sciences, graduate student Ye Ji Kim, and 17 others at MIT and in Germany.

Nov 8, 2024

Advanced sensing tech can detect lung cancer in your exhaled breath

Posted by in categories: biotech/medical, chemistry, nanotechnology

Researchers have developed a nanoscale sensor that detects lung cancer simply by analyzing the levels of a chemical called isoprene in your breath. The team believes its breakthrough could unlock a non-invasive, low-cost method to catch the disease early, and potentially save a lot of lives.

When the human body breaks down fat in a process called lipolytic cholesterol metabolism, isoprene is released in exhaled breath. As it turns out, a decline in isoprene can indicate the presence of lung cancer. The team, led by researchers at China’s Zhejiang University, leveraged this insight through its work and developed an innovative gas sensing material to create a screening process.

The challenge with spotting biomarkers in breath is that your system needs to be able to differentiate between volatile chemicals, withstand the natural humidity of exhaled breath, and detect tiny quantities of specific chemicals. In the case of isoprene, you’d need sensors capable of detecting levels of the chemical in the parts-per-billion (ppb) range.

Nov 7, 2024

Scientist uses nanomagnets to build brain-like AI, cut power use, boost efficiency

Posted by in categories: nanotechnology, neuroscience

Nanomagnets keep a history of their states and can be trained in a few hours.


Jungfleisch uses nanomagnets to store and transmit information and achieves it in a more energy-efficient manner as compared to electrons.

Nov 5, 2024

Textile energy grid charges wirelessly, can transform wearables, eradicate battery needs

Posted by in categories: energy, nanotechnology, wearables

Researchers develop nanomaterial textiles for wireless power, allowing real-time data transmission without the need for bulky batteries.

Nov 2, 2024

World’s brightest X-rays: China set to unveil High-Energy Photon Source

Posted by in categories: energy, nanotechnology

HEPS will transform scientific research by enabling high-energy X-ray probing at the nanoscale.


China is poised to unveil its cutting-edge High Energy Photon Source (HEPS) by year’s end, boasting some of the world’s most powerful synchrotron X-rays.

With a staggering investment of 4.8 billion yuan (approximately US$665 million), this facility marks a significant milestone for Asia, propelling China into the elite league of nations with fourth-generation synchrotron light sources.

Continue reading “World’s brightest X-rays: China set to unveil High-Energy Photon Source” »

Nov 1, 2024

The human spliceosome: Decade-long study reveals first blueprint of the most complex molecular machine inside every cell

Posted by in category: nanotechnology

Researchers at the Center for Genomic Regulation (CRG) in Barcelona have created the first blueprint of the human spliceosome, the most complex and intricate molecular machine inside every cell. The scientific feat, which took more than a decade to complete, is published in the journal Science.

Nov 1, 2024

Off the clothesline, on the grid: MXene nanomaterials enable wireless charging in textiles

Posted by in categories: energy, nanotechnology

The next step for fully integrated textile-based electronics to make their way from the lab to the wardrobe is figuring out how to power the garment gizmos without unfashionably toting around a solid battery. Researchers from Drexel University, the University of Pennsylvania, and Accenture Labs in California have taken a new approach to the challenge by building a full textile energy grid that can be wirelessly charged. In their recent study, the team reported that it can power textile devices, including a warming element and environmental sensors that transmit data in real-time.

Oct 30, 2024

AI Will Dramatically Increase Life Expectancy, Here’s How | MOONSHOTS

Posted by in categories: biotech/medical, finance, law, media & arts, nanotechnology, Ray Kurzweil, robotics/AI, singularity

This clip is from the following episode: https://youtu.be/xqS5PDYbTsE

Recorded on Oct 18th, 2024
Views are my own thoughts; not Financial, Medical, or Legal Advice.

Continue reading “AI Will Dramatically Increase Life Expectancy, Here’s How | MOONSHOTS” »

Oct 30, 2024

Machine Learning Meets Nanotech: Caltech’s Breakthrough in Mass Spectrometry

Posted by in categories: biotech/medical, nanotechnology, robotics/AI

Caltech scientists have introduced a revolutionary machine-learning-driven technique for accurately measuring the mass of individual particles using advanced nanoscale devices.

This method could dramatically enhance our understanding of proteomes by allowing for the mass measurement of proteins in their native forms, thus offering new insights into biological processes and disease mechanisms.

Caltech scientists have developed a machine-learning-powered method that enables precise measurement of individual particles and molecules using advanced nanoscale devices. This breakthrough could lead to the use of various devices for mass measurement, which is key to identifying proteins. It also holds the potential to map the complete proteome—the full set of proteins in an organism.

Oct 29, 2024

Laboratory simulation finds smaller nanoparticles are subject to enhanced agglomeration in gastrointestinal tract

Posted by in categories: biotech/medical, nanotechnology

In a laboratory set-up simulating the human stomach and intestine, researchers at the University of Amsterdam have explored the fate of plastic nanoparticles during gastrointestinal digestion. In their paper published in the October issue of Chemosphere, they report how a range of model plastic nanoparticles interact with digestive enzymes and form agglomerates.

Page 3 of 30712345678Last