Menu

Blog

Archive for the ‘nanotechnology’ category: Page 4

Dec 14, 2024

Differentiation of adsorption and degradation in steroid hormone micropollutants removal using electrochemical carbon nanotube membrane

Posted by in categories: chemistry, nanotechnology

Pervasive micropollutants in aquatic environments pose significant threats to global water supply safety. Here, authors achieved permeate concentrations below the detection limit (2.5 ng/L) using a CNT-based electrochemical membrane, with the contributions of adsorption and degradation distinguished.

Dec 14, 2024

Light-induced gene therapy disables cancer cells’ mitochondria

Posted by in categories: biotech/medical, engineering, life extension, nanotechnology, neuroscience

Researchers are shining a light on cancer cells’ energy centers—literally—to damage these power sources and trigger widespread cancer cell death. In a new study, scientists combined strategies to deliver energy-disrupting gene therapy using nanoparticles manufactured to zero in only on cancer cells. Experiments showed the targeted therapy is effective at shrinking glioblastoma brain tumors and aggressive breast cancer tumors in mice.

The research team overcame a significant challenge to break up structures inside these cellular energy centers, called mitochondria, with a technique that induces light-activated electrical currents inside the cell. They named the technology mLumiOpto.

“We disrupt the membrane, so mitochondria cannot work functionally to produce energy or work as a signaling hub. This causes programmed followed by DNA damage—our investigations showed these two mechanisms are involved and kill the ,” said co-lead author Lufang Zhou, professor of biomedical engineering and surgery at The Ohio State University. “This is how the technology works by design.”

Dec 14, 2024

‘Velcro’ DNA origami helps build nanorobotic Meccano

Posted by in categories: biotech/medical, nanotechnology, robotics/AI

Researchers at the University of Sydney Nano Institute have made a significant advance in the field of molecular robotics by developing custom-designed and programmable nanostructures using DNA origami.

This innovative approach has potential across a range of applications, from targeted drug delivery systems to responsive materials and energy-efficient optical signal processing. The method uses ‘DNA origami’, so-called as it uses the natural folding power of DNA, the building blocks of human life, to create new and useful biological structures.

Continue reading “‘Velcro’ DNA origami helps build nanorobotic Meccano” »

Dec 14, 2024

Nanopatterned graphene enables infrared ‘color’ detection and imaging

Posted by in categories: materials, nanotechnology

University of Central Florida (UCF) researcher Debashis Chanda, a professor at UCF’s NanoScience Technology Center, has developed a new technique to detect long wave infrared (LWIR) photons of different wavelengths or “colors.”

The research was recently published in Nano Letters.

The new detection and imaging technique will have applications in analyzing materials by their spectral properties, or spectroscopic imaging, as well as thermal imaging applications.

Dec 14, 2024

Molecular motors put significant twists to DNA loops

Posted by in categories: biotech/medical, evolution, nanotechnology, neuroscience

Astrocytes are star-shaped glial cells in the central nervous system that support neuronal function, maintain the blood-brain barrier, and contribute to brain repair and homeostasis. The evolution of these cells throughout the progression of Alzheimer’s disease (AD) is still poorly understood, particularly when compared to that of neurons and other cell types.

Researchers at Massachusetts General Hospital, the Massachusetts Alzheimer’s Disease Research Center, Harvard Medical School and Abbvie Inc. set out to fill this gap in the literature.

Their paper, published in Nature Neuroscience, provides one of the most detailed accounts to date of how different astrocyte subclusters respond to AD across different brain regions and disease stages, providing valuable insights into the cellular dynamics of the disease.

Dec 14, 2024

A new twist: The molecular machines that loop chromosomes also twist DNA

Posted by in categories: biotech/medical, health, nanotechnology

Scientists from the Kavli Institute of Delft University of Technology and the IMP Vienna Biocenter have discovered a new property of the molecular motors that shape our chromosomes. While six years ago they found that these so-called SMC motor proteins make long loops in our DNA, they have now discovered that these motors also put significant twists into the loops that they form.

These findings help us better understand the structure and function of our chromosomes. They also provide insight into how disruption of twisted DNA looping can affect health—for instance, in developmental diseases like “cohesinopathies.” The scientists published their findings in Science Advances.

Imagine trying to fit two meters of rope into a space much smaller than the tip of a needle—that’s the challenge every cell in your body faces when packing its DNA into its tiny nucleus. To achieve this, nature employs ingenious strategies, like twisting the DNA into coils of coils, so-called “supercoils” and wrapping it around special proteins for compact storage.

Dec 13, 2024

A Twisted Path to Innovation: Vortex Electric Fields in 2D Materials Advance Electronics and Quantum Devices

Posted by in categories: computing, nanotechnology, particle physics, quantum physics

In the world of science, even a small twist may carry immense implications for materials. Researchers at City University of Hong Kong have uncovered how a subtle rotation in 2D layers can give rise to a vortex electric field. This finding, published in Science, has the potential to impact electronic, magnetic, and optical devices as well as new applications in quantum computing, spintronics, and nanotechnology. According to Professor Ly Thuc Hue of CityUHK’s Department of Chemistry, the study demonstrates how “a simple twist in bilayer 2D materials” can induce this electric field, bypassing the need for costly thin-film deposition techniques.

Akin to solving intricate technical puzzles, researchers had to ensure clean, precisely aligned layers of material—a notoriously difficult challenge in the world of 2D materials. Twisted bilayers are made by stacking two thin layers of a material at a slight angle, creating unique electronic properties.

However, traditional methods of synthesizing these bilayers often limit the range of twist angles, particularly at smaller degrees, making exploration of their full potential nearly impossible. To address this, the team at City University of Hong Kong developed an ice-assisted transfer technique that uses a thin sheet of ice to align and transfer bilayers with precision.

Dec 13, 2024

Humans Are Still Dreaming of Clean Energy. Carbon Nanotubes May Be the Turning Point

Posted by in categories: energy, nanotechnology

They could store 15,000 times more energy than steel springs and three times more energy than lithium.

Dec 13, 2024

Nano-Switch Discovery: How a Single Hydrogen Atom Powers Life’s Energy Reactions

Posted by in categories: biotech/medical, nanotechnology

A new study reveals a ‘nano-switch’ in ferredoxin that affects its electron transfer, which could lead to advancements in sensors and drug development.

Researchers in Japan have discovered a mechanism for controlling the potential of an “electron carrier” protein in the redox reaction that all organisms need to obtain energy. Through experiments, the precise 3D structure of the protein, including hydrogen atoms, was determined, and theoretical calculations using this data visualized the electronic structure of the iron-sulfur cluster.

The results revealed, for the first time, that the electric potential of the iron-sulfur cluster changes dramatically depending on the presence or absence of a single hydrogen atom at an amino acid side chain, a so-called “nano-switch” mechanism. This research, recently published in the journal eLife, not only deepens our scientific understanding of biological reactions but also provides crucial insights for the future development of ultra-sensitive sensors for oxygen and nitric oxide, as well as novel drugs.

Dec 13, 2024

Cancer Therapy by Silver Nanoparticles: Fiction or Reality?

Posted by in categories: biotech/medical, nanotechnology

As an emerging new class, metal nanoparticles and especially silver nanoparticles hold great potential in the field of cancer biology. Due to cancer-specific targeting, the consequently attenuated side-effects and the massive anti-cancer features render nanoparticle therapeutics desirable platforms for clinically relevant drug development. In this review, we highlight those characteristics of silver nanoparticle-based therapeutic concepts that are unique, exploitable, and achievable, as well as those that represent the critical hurdle in their advancement to clinical utilization. The collection of findings presented here will describe the features that distinguish silver nanoparticles from other anti-cancer agents and display the realistic opportunities and implications in oncotherapeutic innovations to find out whether cancer therapy by silver nanoparticles is fiction or reality.

Page 4 of 31612345678Last