Menu

Blog

Archive for the ‘neuroscience’ category: Page 219

Oct 2, 2023

Psychedelics plus psychotherapy can trigger rapid changes in the brain − new research at the level of neurons is untangling how

Posted by in categories: biotech/medical, neuroscience

The human brain can change – but usually only slowly and with great effort, such as when learning a new sport or foreign language, or recovering from a stroke. Learning new skills correlates with changes in the brain, as evidenced by neuroscience research with animals and functional brain scans in people. Presumably, if you master Calculus 1, something is now different in your brain. Furthermore, motor neurons in the brain expand and contract depending on how often they are exercised – a neuronal reflection of “use it or lose it.”

People may wish their brains could change faster – not just when learning new skills, but also when overcoming problems like anxiety, depression and addictions.

… More

Continue reading “Psychedelics plus psychotherapy can trigger rapid changes in the brain − new research at the level of neurons is untangling how” »

Oct 2, 2023

Study shows we can be convinced an AI chatbot is trustworthy

Posted by in categories: neuroscience, robotics/AI

Participants individually interacted with a conversational AI mental health chatbot for about 30 minutes to determine if they would recommend it to a friend.

As human beings, we rely on recommendations or warnings from our friends and family. It gives us an added perspective on what to expect from a particular service, a product, or another human being. As per the latest study, the same is true for the way in which we trust and perceive an AI chatbot.

Researchers from Massachusetts Institute of Technology (MIT) and Arizona State University conducted a study in which they found that even though every person in their sample size of 310 people interacted with the exact same chatbot, their interactions with it were influenced by what they had been told before.

Oct 2, 2023

🧠 The brain — the last fortress of humanity

Posted by in categories: business, neuroscience

“New devices can read and manipulate our mental states to help us relax, learn and reduce pain. As they do this, they harvest data. Can businesses be trusted with this private information? How can we make use of this technology while protecting the last fortress of our humanity — our thoughts and emotions?”


As neurotechnology becomes widely accessible, do we need to legally protect our thoughts?

Oct 2, 2023

“Inverse vaccine” shows potential to treat multiple sclerosis and other autoimmune diseases

Posted by in categories: bioengineering, biotech/medical, neuroscience

A typical vaccine teaches the human immune system to recognize a virus or bacteria as an enemy that should be attacked. The new “inverse vaccine” does just the opposite: it removes the immune system’s memory of one molecule. While such immune memory erasure would be unwanted for infectious diseases, it can stop autoimmune reactions like those seen in multiple sclerosis, type I diabetes, or rheumatoid arthritis, in which the immune system attacks a person’s healthy tissues.

The inverse vaccine, described in Nature Biomedical Engineering, takes advantage of how the liver naturally marks molecules from broken-down cells with “do not attack” flags to prevent autoimmune reactions to cells that die by natural processes. PME researchers coupled an antigen — a molecule being attacked by the immune system— with a molecule resembling a fragment of an aged cell that the liver would recognize as friend, rather than foe. The team showed how the vaccine could successfully stop the autoimmune reaction associated with a multiple-sclerosis-like disease.

“In the past, we showed that we could use this approach to prevent autoimmunity,” said Jeffrey Hubbell, the Eugene Bell Professor in Tissue Engineering and lead author of the new paper. “But what is so exciting about this work is that we have shown that we can treat diseases like multiple sclerosis after there is already ongoing inflammation, which is more useful in a real-world context.”

Oct 2, 2023

Total Triterpenes of Wolfiporia cocos (Schwein.) Ryvarden & Gilb Exerts Antidepressant-Like Effects in a Chronic Unpredictable Mild Stress Rat Model and Regulates the Levels of Neurotransmitters, HPA Axis and NLRP3 Pathway

Posted by in categories: biotech/medical, chemistry, neuroscience

Purpose: Wolfiporia cocos is frequently used in traditional Chinese medicine to treat depression. However, antidepressant-like effects of the main active ingredients of Wolfiporia cocos, total triterpenes of Wolfiporia cocos (TTWC), are not well studied. This study aimed to investigate those effects and explore their specific mechanisms of action in depth. Methods: Chemical components of TTWC were analyzed using LC-MS. Depression-like behavior in rats were induced by chronic unpredictable mild stress (CUMS). The suppressive effects of TTWC (60120240 mg/kg) against CUMS-induced depression-like behavior were evaluated using the forced swimming test (FST), open field test (OFT) and sucrose preference test (SPT). Levels of 5-hydroxytryptamine (5-HT), glutamate (GLU), corticotropin-releasing hormone (CRH), interleukin-1 beta (IL-1beta), interleukin-18 (IL-18), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-alpha) in different groups were determined by ELISA. Western blotting (WB) was used to detect the expression of NLRP3, ASC, pro-caspase-1, caspase-1, pro-IL-1beta, IL-1beta, pro-IL-18, and IL-18 in the prefrontal cortex. Additionally, the mRNA levels of NLRP3, ASC, caspase-1, IL-1beta and IL-18 were detected by RT-PCR. Results: A total of 69 lanostane-type triterpene acids of TTWC were identified. The results showed that TTWC exhibited an antidepressant-like effect in CUMS rats, reversed the decreased sugar preference in the SPT, reduction of immobility time in the FST, reduced the rest time, increased the total moving distance in the OFT. TTWC increased 5-HT levels and decreased GLU levels in the hippocampus. Moreover, TTWC decreased CRH levels in serum, indicating the regulation of over-activation of the hypothalamic-pituitary-adrenal (HPA) axis. In addition, reduced serum levels of IL-1beta, IL-18, IL-6, and TNF-alpha. The WB results implied that TTWC inhibited the expression of NLRP3, ASC, caspase-1, IL-1beta, and IL-18 in the prefrontal cortex and enhanced the expression of pro-caspase-1, pro-IL-1beta, and pro-IL-18. Although most of the results were not significant, PCR results showed that TTWC inhibited the expression of NLRP3, ASC, caspase-1, IL-1beta, and IL-18 in the prefrontal cortex. Conclusion: TTWC treatment exerted an antidepressant-like effect and regulates neurotransmitters, HPA axis and NLRP3 signaling pathway. These results indicated the potential of TTWC in preventing the development of depression.

Keywords: NLRP3 pathway; Wolfiporia cocos (schwein.) ryvarden & gilb; chronic unpredictable mild stress; depression; hypothalamic-pituitary-adrenal axis; neurotransmitter; triterpenes.

Copyright © 2022 Pan, Chen, Han, Luo, Zhang, Zhang, Zhang, Zhou, Li, Fang, Wang and Ye.

Oct 2, 2023

Where Does Consciousness Start? Debate Is Heating Up Over Some of The Leading Theories

Posted by in category: neuroscience

Science is hard. The science of consciousness is particularly hard, beset with philosophical difficulties and a scarcity of experimental data.

So in June, when the results of a head-to-head experimental contest between two rival theories were announced at the 26th annual meeting of the Association for the Scientific Study of Consciousness in New York City, they were met with some fanfare.

The results were inconclusive, with some favoring “integrated information theory” and others lending weight to the “global workspace theory”. The outcome was covered in both Science and Nature, as well as larger outlets including the New York Times and The Economist.

Oct 2, 2023

Simple Worms Might Experience Basic, Fear-Like Emotions

Posted by in category: neuroscience

Incredible though it may seem, a wriggly roundworm with no eyes, no spine, and no brain to speak of may still possess the most basic of animal emotions.

In recent research, the nematode, Caenorhabditis elegans, has shown a persistent negative reaction when given a quick electric zap. For many minutes after receiving the short and sharp shock, this species continued to ‘flee’ at high speeds in the laboratory.

Researchers from Nagoya City University in Japan and Northeastern University in the US say that the long-lasting response, which looks like the worm ‘running’ away, is indicative of a fear-like brain state.

Oct 1, 2023

I’ve Been Thinking by Daniel C Dennett review — an engaging, vexing memoir with a humility bypass

Posted by in category: neuroscience

The veteran US philosopher renowned for his theories of consciousness is an intriguing figure but too prone to ‘professorial preening’.

Oct 1, 2023

‘Molecular road’ to Alzheimer’s leads to new treatment strategy

Posted by in categories: biotech/medical, neuroscience

Repost, but if you know someone’s dealing with such, the information can help you and them. The suppressing of it can not help anyone.

Alzheimer’s disease varies widely in its age of onset, presentation, and severity. Recently, the SORL1 gene has received increased attention since variations in this gene have been associated with both early-and late-onset Alzheimer’s. However, little is known about how damage to SORL1 leads to disease.

Using stem cells from patients with Alzheimer’s, investigators from Harvard-affiliated Brigham and Women’s Hospital found that loss of normal SORL1 function leads to a reduction in two key proteins known to be involved in Alzheimer’s and which play an essential role in the neurons of healthy individuals.

Continue reading “‘Molecular road’ to Alzheimer’s leads to new treatment strategy” »

Sep 30, 2023

These Adorable Jellyfish Show Learning Doesn’t Even Require a Brain

Posted by in categories: biological, neuroscience

Tiny, brainless jellyfish just did something that on the surface may seem impossible: the adorable creatures showed evidence of learning.

Even with just 1,000 neurons active at a time and no central brain, Caribbean box jellyfish (Tripedalia cystophora) can learn from experience, researchers argue in a new paper published September 22 in the journal Current Biology. The results aren’t surprising, say several scientists not involved in the project, but are a reminder for people to think more broadly about learning.

“If you’re an animal and have to navigate the world, you have to learn cues and consequences. Otherwise you’re dead, and you can’t reproduce,” says Christie Sahley, a… More.

Continue reading “These Adorable Jellyfish Show Learning Doesn’t Even Require a Brain” »

Page 219 of 1,014First216217218219220221222223Last