Menu

Blog

Archive for the ‘quantum physics’ category: Page 577

Nov 8, 2019

Holographic Duality Yields Breakthrough in Black Hole Physics

Posted by in categories: cosmology, quantum physics

A group of Skoltech researchers led by Professor Anatoly Dymarsky studied the emergence of generalized thermal ensembles in quantum systems with additional symmetries. As a result, they found that black holes thermalize the same way ordinary matter does. The results of their study were published in Physical Review Letters.

The physics of black holes remains an elusive chapter of modern physics. It is the sharpest point of tension between quantum mechanics and the theory of general relativity. According to quantum mechanics, black holes should behave like other ordinary quantum systems. Yet, there are many ways in which this is problematic from the point of view of Einstein’s theory of general relativity. Therefore, the question of understanding black holes quantum mechanically remains a constant source of physical paradoxes. The careful resolution of such paradoxes should provide us a clue as to how quantum gravity works. That is why the physics of black holes is the subject of active research in theoretical physics.

One particularly important question is how black holes thermalize. A recent study undertaken by a group of Skoltech researchers found that in this regard black holes are not that different from ordinary matter. Namely, the emergence of equilibrium can be explained in terms of the same mechanism as in the conventional case. An analytical study of black holes became possible due to the rapidly developing theoretical tools of the so-called holographic duality. This duality maps certain types of conventional quantum systems to particular cases of quantum gravity systems. Although additional work is necessary to extend this similarity to thermalization dynamics, this work provides additional support for the paradigm that important aspects of black holes and quantum gravity, in general, can be explained in terms of the collective dynamics of conventional quantum many-body systems.

Nov 8, 2019

Meet the scientist who thinks we all exist in multiple universes

Posted by in categories: alien life, information science, quantum physics

Have you ever laid wide-awake in the late hours of the night wondering what your life would look like if you took that other job, moved countries, or ended up with someone else? While there’s no definite answer — and probably never will be — the idea that there’s multiple versions of you, living in various universes, isn’t as make-believe as you might think.

According to Sean Carroll, a theoretical physicist at the California Institute of Technology and author of Something Deeply Hidden: Quantum Worlds and the Emergence of Spacetime, the increasingly popular theory of Many Worlds Interpretation suggests every fundamental event has multiple possible outcomes and splits the world into alternate realities.

This mind-bending idea originally came from Hugh Everett, a graduate student who wrote just one paper in the 1950s. Everett’s theory describes the universe as a “changing set of numbers, known as the wave function, that evolves according to a single equation.” According to Many Worlds, the universe continually splits into new branches, to produce multiple versions of ourselves. Carroll argues that, so far, this interpretation is the simplest possible explanation of quantum mechanics.

Nov 8, 2019

Microsoft’s better quantum computer tech is almost ready

Posted by in categories: computing, quantum physics

Microsoft’s new approach to quantum computing is “very close,” an executive says.

Nov 8, 2019

An Introduction to Quantum Microwaves for Communication and Sensing

Posted by in categories: futurism, quantum physics

In this interview, AZoNano speaks to Frank Deppe, Junior Group Leader for Superconducting Quantum Circuits at the Walther-Meißner-Institut, about QMiCS and the work that it does.

Can you give a brief overview European Quantum Technology Flagship Program ‘QMiCS’?

The project acronym ‘QMiCS’ means “Quantum Microwaves for Communication and Sensing”. QMiCS is one out of 20 projects which got funded in the highly competitive first call of the European Quantum Technology Flagship Program. Within this program, QMiCS is still a basic science project, where academic research groups collaborate with selected commercial companies. The main task of QMiCS is to explore the potential of non-classical propagating microwaves, whose behavior is controlled by the laws of quantum mechanics, for future applications and commercial exploitation.

Nov 8, 2019

Even In A Quantum Universe, Space And Time Might Be Continuous, Not Discrete

Posted by in category: quantum physics

When you hear ‘quantum,’ you probably think of splitting everything into discrete, indivisible chunks. That’s not necessarily right.

Nov 8, 2019

Google’s Sycamore breakthrough doesn’t spell the end for China’s hopes of winning quantum computer race

Posted by in categories: quantum physics, supercomputing

After the US tech giant announced it had developed a chip that dramatically outperformed supercomputers, Chinese researchers remain confident they can find the ‘holy grail’ of technology.

Nov 8, 2019

DSU gets nearly $240,000 research grant from Army

Posted by in categories: biotech/medical, military, quantum physics

The Department of Defense has awarded Dr. Gour Pati, professor of Physics and Engineering at Delaware State University a $239,908 grant from the U.S. Army to develop and build a millimeter-wave quantum sensing system at DSU.

Dr. Pati – the principal investigator – and his researchers have recognized the increasing importance of millimeter-wave sensing and imaging in commercial and military sectors, as well as how it is driving the development of low-cost sensors. Dr. Pati’s success in winning the DoD grant engages DSU scientists and students in the work of furthering this advancement.

Rydberg atoms have a hypersensitive response to microwave, millimeter-wave and terahertz radiation. They have the potential for applications in modern communications, remote sensing and many other fields, including medical science. Pati and his team will develop a real-time millimeter-wave sensor using laser-induced fluorescence in Rydberg atoms.

Nov 7, 2019

Cosmos, Quantum and Consciousness: Is Science Doomed to Leave Some Questions Unanswered?

Posted by in categories: neuroscience, quantum physics, science

Physicists, philosophers debate whether research can ever solve certain mysteries of the universe—and the human mind.

Nov 6, 2019

Entering the field of zeptosecond measurement

Posted by in categories: particle physics, quantum physics

Circa 2016


Laser physicists in Munich have measured a photoionization — in which an electron exits a helium atom after excitation by light — for the first time with zeptosecond precision. A zeptosecond is a trillionth of a billionth of a second (10^−21 seconds). This is the greatest accuracy of time determination ever achieved, as well as the first absolute determination of the timescale of photoionization.

If light hits the two electrons of a helium atom, one must be incredibly fast to observe what occurs. Besides the ultra-short periods in which changes take place, quantum mechanics also comes into play. Laser physicists at the Max Planck Institute of Quantum Optics (MPQ), the Technical University of Munich (TUM) and the Ludwig Maximilians University (LMU) Munich have now measured such an event for the first time with zeptosecond precision.

Continue reading “Entering the field of zeptosecond measurement” »

Nov 6, 2019

Opinion: It’s arrogant to assume humans will never imbue AI with consciousness

Posted by in categories: quantum physics, robotics/AI

Cogito, ergo sum,” Rene Descartes. Translation: “I think, therefore I am.”

What makes us, us? How is it that we’re able to look at a tree and see beauty, hear a song and feel moved, or take comfort in the smell of rain or the taste of coffee? How do we know we still exist when we close our eyes and lie in silence? To date, science doesn’t have an answer to those questions.

In fact, it doesn’t even have a unified theory. And that’s because we can’t simulate consciousness. All we can do is try to reverse-engineer it by studying living beings. Artificial intelligence, coupled with quantum computing, could solve this problem and provide the breakthrough insight scientists need to unravel the mysteries of consciousness. But first we need to take the solution seriously.