Menu

Blog

Archive for the ‘quantum physics’ category: Page 578

Jan 17, 2020

Quantum properties of water discovered — water is like a hologram

Posted by in categories: holograms, quantum physics

Water is special even based on its simple physical properties since it is the only substance on earth that can be found in all three states (liquid, solid, gas). However, scientists at the US Department of Energy Oak Ridge National Laboratory (ORNL) have discovered new properties of water that go beyond the known laws of classical physics says the phys.org scientific news portal.

Passes through solid walls.

Jan 16, 2020

Nanoparticle levitated

Posted by in categories: biotech/medical, nanotechnology, quantum physics

A dumbbell-shaped nanoparticle powered just by the force and torque of light has become the world’s fastest-spinning object.

Scientists at Purdue University created the , which revolves at 300 billion revolutions per minute. Or, put another way, half a million times faster than a dentist’s drill.

In addition, the silica nanoparticle can serve as the world’s most sensitive detector, which researchers hope will be used to measure the friction created by .

Jan 16, 2020

Quantum physics: Controlled experiment observes self-organized criticality

Posted by in categories: biotech/medical, quantum physics

Writing in Nature, researchers describe the first-time observation of ‘self-organized criticality’ in a controlled laboratory experiment. Complex systems exist in mathematics and physics, but also occur in nature and society. The concept of self-organized criticality claims that without external input, complex systems in non-equilibrium tend to develop into a critical state far away from a stable equilibrium. That way, they reinforce their own non-equilibrium.

Systems that are at first glance quite different, like the dissemination of information in social networks or the spread of fire or disease, may have similar characteristics. One example is an avalanche-like behaviour that reinforces itself instead of coming to a standstill. However, these are very difficult to study under controlled lab conditions.

For the first time, researchers from the European Centre for Quantum Sciences (CESQ) in Strasbourg, in collaboration with researchers from the universities of Cologne and Heidelberg and the California Institute of Technology, have succeeded in observing the most important features of self-organized in a controlled experiment—including universal avalanche behavior.

Jan 16, 2020

AlphaZero learns to rule the quantum world

Posted by in categories: computing, information science, quantum physics

The chess world was amazed when the computer algorithm AlphaZero learned, after just four hours on its own, to beat the best chess programs built on human expertise. Now a research group at Aarhus University in Denmark has used the very same algorithm to control a quantum computer.

All across the world, numerous research groups are attempting to build a quantum . Such a computer would be able to solve certain problems that cannot be solved with current classical computers, even if we combined all these computers in the world into one.

At Aarhus University, researchers share the ambition of building a quantum computer. For this reason, a research group under the direction of Professor Jacob Sherson has just used the computer algorithm AlphaZero to learn to control a quantum system.

Jan 16, 2020

Colloidal Quantum Dot Laser Diodes on the Horizon

Posted by in categories: computing, quantum physics

LOS ALAMOS, N.M., Jan. 15, 2020 — Scientists at Los Alamos National Laboratory have incorporated meticulously engineered colloidal quantum dots into a new type of LED containing an integrated optical resonator, which allows the LEDs to function as lasers.

Jan 15, 2020

Precise measurements find a crack in universal physics

Posted by in categories: chemistry, cosmology, particle physics, quantum physics

The concept of universal physics is intriguing, as it enables researchers to relate physical phenomena in a variety of systems, irrespective of their varying characteristics and complexities. Ultracold atomic systems are often perceived as ideal platforms for exploring universal physics, owing to the precise control of experimental parameters (such as the interaction strength, temperature, density, quantum states, dimensionality, and the trapping potential) that might be harder to tune in more conventional systems. In fact, ultracold atomic systems have been used to better understand a myriad of complex physical behavior, including those topics in cosmology, particle, nuclear, molecular physics, and most notably, in condensed matter physics, where the complexities of many-body quantum phenomena are more difficult to investigate using more traditional approaches.

Understanding the applicability and the robustness of universal is thus of great interest. Researchers at the National Institute of Standards and Technology (NIST) and the University of Colorado Boulder have carried out a study, recently featured in Physical Review Letters, aimed at testing the limits to universality in an ultracold system.

“Unlike in other physical systems, the beauty of ultracold systems is that at times we are able to scrap the importance of the periodic table and demonstrate the similar phenomenon with any chosen atomic species (be it potassium, rubidium, lithium, strontium, etc.),” Roman Chapurin, one of the researchers who carried out the study, told Phys.org. “Universal behavior is independent of the microscopic details. Understanding the limitations of universal phenomenon is of great interest.”

Jan 14, 2020

IBM’s Plan to Design Solid-State Batteries Using Quantum Tech

Posted by in categories: computing, quantum physics, solar power, sustainability

Batteries are the key to decarboni z ing both transport and the grid, but today’s technology is still a long way from living up to this promise. IBM seems to have decided its computing chops are the key to solving the problem.

Lithium-ion batteries are still the gold standard technology in this field, and they’ve come a long way; 10 years ago they could just about get your iPod through the day, today they can power high-performance cars over hundreds of miles.

But if we want to reach a point w h ere batteries can outperform gasoline or store huge amounts of solar energy, we need some breakthroughs. So IBM has teamed up with Mercedes-Benz and its parent company Daimler to develop new batteries that could match up to our needs.

Jan 13, 2020

More Than One Reality Exists (in Quantum Physics)

Posted by in category: quantum physics

New experiments addressed a decades-old theoretical question in physics, demonstrating that two realities can exist at the same time.

Jan 13, 2020

Influential electrons? Physicists uncover a quantum relationship

Posted by in categories: materials, quantum physics

A team of physicists has mapped how electron energies vary from region to region in a particular quantum state with unprecedented clarity. This understanding reveals an underlying mechanism by which electrons influence one another, termed quantum “hybridization,” that had been invisible in previous experiments.

The findings, the work of scientists at New York University, the Lawrence Berkeley National Laboratory, Rutgers University, and MIT, are reported in the journal Nature Physics.

“This sort of relationship is essential to understanding a quantum electron system—and the foundation of all movement—but had often been studied from a theoretical standpoint and not thought of as observable through experiments,” explains Andrew Wray, an assistant professor in NYU’s Department of Physics and one of the paper’s co-authors. “Remarkably, this work reveals a diversity of energetic environments inside the same material, allowing for comparisons that let us spot how electrons shift between states.”

Jan 13, 2020

Tuning optical resonators gives researchers control over transparency

Posted by in categories: mathematics, quantum physics

In the quantum realm, under some circumstances and with the right interference patterns, light can pass through opaque media.

This feature of is more than a mathematical trick; optical quantum memory, optical storage and other systems that depend on interactions of just a few photons at a time rely on the process, called electromagnetically induced transparency, also known as EIT.

Because of its usefulness in existing and emerging quantum and optical technologies, researchers are interested in the ability to manipulate EIT without the introduction of an outside influence, such as additional photons that could perturb the already delicate system. Now, researchers at the McKelvey School of Engineering at Washington University in St. Louis have devised a fully contained optical system that can be used to turn transparency on and off, allowing for a measure of control that has implications across a wide variety of applications.