Menu

Blog

Archive for the ‘chemistry’ category: Page 119

Jul 3, 2023

A user-friendly platform for virtual exploration of chemical reactions

Posted by in categories: chemistry, computing

A new online platform to explore computationally calculated chemical reaction pathways has been released, allowing for in-depth understanding and design of chemical reactions.

Advances in have lead to the discovery of new reaction pathways for the synthesis of high-value compounds. Computational chemistry generates much data, and the process of organizing and visualizing this data is vital to be able to utilize it for future research.

A team of researchers from Hokkaido University, led by Professor Keisuke Takahashi at the Faculty of Chemistry and Professor Satoshi Maeda at the Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), have developed a centralized, interactive, and user-friendly platform, Searching Chemical Action and Network (SCAN), to explore reaction pathways generated by computational chemistry. Their research was published in the journal Digital Discovery.

Jul 3, 2023

Unraveling a Quantum Enigma: How Tantalum Enhances Qubit Performance

Posted by in categories: chemistry, computing, nanotechnology, quantum physics

Whether it’s baking a cake, constructing a building, or creating a quantum device, the caliber of the finished product is greatly influenced by the components or fundamental materials used. In their pursuit to enhance the performance of superconducting qubits, which form the bedrock of quantum computers, scientists have been probing different foundational materials aiming to extend the coherent lifetimes of these qubits.

Coherence time serves as a metric to determine the duration a qubit can preserve quantum data, making it a key performance indicator. A recent revelation by researchers showed that the use of tantalum in superconducting qubits enhances their functionality. However, the underlying reasons remained unknown – until now.

Scientists from the Center for Functional Nanomaterials (CFN), the National Synchrotron Light Source II (NSLS-II), the Co-design Center for Quantum Advantage (C2QA), and Princeton University investigated the fundamental reasons that these qubits perform better by decoding the chemical profile of tantalum.

Jun 30, 2023

Dr. Brad Ringeisen, Ph.D. — Executive Director, Innovative Genomics Institute (IGI)

Posted by in categories: bioengineering, biotech/medical, chemistry, food, genetics, governance, health, neuroscience

Is the Executive Director of the Innovative Genomics Institute (https://innovativegenomics.org/people/brad-ringeisen/), an organization founded by Nobel Prize winner Dr. Jennifer Doudna, on the University of California, Berkeley campus, whose mission is to bridge revolutionary gene editing tool development to affordable and accessible solutions in human health and climate.

Dr. Ringeisen is a physical chemist with a Ph.D. from the University of Wisconsin-Madison, a Bachelor of Science in chemistry from Wake Forest University, a pioneer in the field of live cell printing, and an experienced administrator of scientific research and product development.

Continue reading “Dr. Brad Ringeisen, Ph.D. — Executive Director, Innovative Genomics Institute (IGI)” »

Jun 30, 2023

New drug delivery method can reverse senescence of stem cells

Posted by in categories: biotech/medical, chemistry, engineering

As we age, our bodies change and degenerate over time in a process called senescence. Stem cells, which have the unique ability to change into other cell types, also experience senescence, which presents an issue when trying to maintain cell cultures for therapeutic use. The biomolecules produced by these cell cultures are important for various medicines and treatments, but once the cells enter a senescent state they stop producing them, and worse, they instead produce biomolecules antagonistic to these therapeutics.

While there are methods to remove older cells in a culture, the capture rate is low. Instead of removing older cells, preventing the cells from entering in the first place is a better strategy, according to Ryan Miller, a postdoctoral fellow in the lab of Hyunjoon Kong (M-CELS leader/EIRH/RBTE), a professor of chemical and biomolecular engineering.

“We work with , that are derived from fat tissue, and produce biomolecules that are essential for therapeutics, so we want to keep the cell cultures healthy. In a clinical setting, the ideal way to prevent senescence would be to condition the environment that these stem cells are in, to control the oxidative state,” said Miller. “With , you can pull them the cells out of this senescent state and make them behave like a healthy stem cell.”

Jun 29, 2023

This Plasma Engine Could Get Humans to Mars on 100 Million Times Less Fuel

Posted by in categories: chemistry, energy, physics, satellites

Year 2015 😗😁


Physicists in France have figured out how to optimise an advanced type of electric rocket thruster that uses a stream of plasma travelling at 72,420 km/h (45,000 mph) to propel spacecraft forward, allowing them to run on 100 million times less fuel than conventional chemical rockets.

Known as a Hall thruster, these engines have been operating in space since 1971, and are now routinely flown on communication satellites and space probes to adjust their orbits when needed. These things are awesome, and scientists want to use them to get humans to Mars, except there’s one — rather large — problem: the current lifespan of a Hall thruster is around 10,000 operation hours, and that’s way too short for most space exploration missions, which require upwards of 50,000 hours.

Continue reading “This Plasma Engine Could Get Humans to Mars on 100 Million Times Less Fuel” »

Jun 29, 2023

Artificially cultured brains improve processing of time series data, shows study

Posted by in categories: chemistry, computing

The brain comprises billions of interconnected neurons that transmit and process information and allow it to act as a highly sophisticated information processing system. To make it as efficient as possible, the brain develops multiple modules tasked with different functions, like perception and body control. Within a single area, neurons form multiple clusters and function as modules—an important trait that has remained essentially unchanged throughout evolution.

Still, many unanswered questions remain regarding how the specific structure of the brain’s network, such as the modular structure, works together with the physical and chemical properties of neurons to process information.

Reservoir computing is a inspired by the brain’s powers, where the comprises a large number of interconnected nodes that transform input signals into a more complex representation.

Jun 28, 2023

Oxygen restriction helps fast-aging lab mice live longer

Posted by in categories: biotech/medical, chemistry, life extension

For the first time, researchers have shown that reduced oxygen intake, or “oxygen restriction,” is associated with longer lifespan in lab mice, highlighting its anti-aging potential. Robert Rogers of Massachusetts General Hospital in Boston, US, and colleagues present these findings in a study published May 23rd in the open access journal PLOS Biology.

Research efforts to extend healthy lifespan have identified a number of chemical compounds and other interventions that show promising effects in mammalian lab animals— for instance, the drug metformin or . Oxygen restriction has also been linked to longer lifespan in yeast, nematodes, and fruit flies. However, its effects in mammals have been unknown.

To explore the anti-aging potential of oxygen restriction in mammals, Rogers and colleagues conducted lab experiments with mice bred to age more quickly than other mice while showing classic signs of mammalian aging throughout their bodies. The researchers compared the lifespans of mice living at normal atmospheric oxygen levels (about 21%) to the lifespans of mice that, at 4 weeks of age, had been moved to a living environment with a lower proportion of oxygen (11%—similar to that experienced at an altitude of 5,000 meters).

Jun 28, 2023

New mass spectrometry combo offers promise for tapping nature’s unknown chemical universe

Posted by in categories: biotech/medical, chemistry

The universe is awash in billions of possible chemicals. But even with a bevy of high-tech instruments, scientists have determined the chemical structures of just a small fraction of those compounds, maybe 1%.

Scientists at the Department of Energy’s Pacific Northwest National Laboratory (PNNL) are taking aim at the other 99%, creating new ways to learn more about a vast sea of unknown compounds. There may be cures for disease, new approaches for tackling climate change, or new chemical or biological threats lurking in the chemical universe.

The work is part of an initiative known as m/q, or “m over q” —shorthand for mass divided by charge, which signifies one of the ways that scientists measure chemical properties in the world of .

Jun 28, 2023

Chemical imbalance in the forebrain underpins compulsive behavior and OCD, study reveals

Posted by in categories: biotech/medical, chemistry, neuroscience

Scientists at the University of Cambridge have used powerful new brain imaging techniques to reveal a neurochemical imbalance within regions of the frontal lobes in patients with obsessive-compulsive disorder (OCD). The research findings are published in the journal Nature Communications.

The study shows that the balance between glutamate and GABA—two major neurotransmitter chemicals—is “disrupted” in OCD patients in two frontal regions of the brain.

Researchers also found that people who do not have OCD but are prone to habitual and compulsive behavior have increased glutamate levels in one of these brain regions.

Jun 27, 2023

A surprise chemical find by ALMA may help detect and confirm protoplanets

Posted by in categories: chemistry, space

Scientists using the Atacama Large Millimeter/submillimeter Array (ALMA) to study the protoplanetary disk around a young star have discovered the most compelling chemical evidence to date of the formation of protoplanets. The discovery will provide astronomers with an alternate method for detecting and characterizing protoplanets when direct observations or imaging are not possible. The results will be published in an upcoming edition of The Astrophysical Journal Letters.

HD 169,142 is a young star located in the constellation Sagittarius that is of significant interest to astronomers due to the presence of its large, dust-and gas-rich circumstellar disk that is viewed nearly face-on. Several candidates have been identified over the last decade, and earlier this year, scientists at the University of Liège and Monash University confirmed that one such candidate—HD 169,142 b—is, in fact, a giant Jupiter-like protoplanet.

The discoveries revealed in a new analysis of archival data from ALMA—an in which the National Science Foundation’s National Radio Astronomy Observatory (NRAO) is a member—may now make it easier for scientists to detect, confirm, and ultimately characterize, protoplanets forming around .